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c) Synthesis from the Q̃‖ + iŨ‖ data set . . . . . . . . . . . 83
IV.2.2 One-point and two-point statistics of synthetic maps . . . . . . . . 85

IV.3 Application with the WPH . . . . . . . . . . . . . . . . . . . . . . . . . . 88
IV.3.1 The wavelet phase harmonics . . . . . . . . . . . . . . . . . . . . . 88

a) Bump-steerable wavelets . . . . . . . . . . . . . . . . . . 89
b) WPH moments . . . . . . . . . . . . . . . . . . . . . . . . 90
c) Choice of a subset of WPH moments . . . . . . . . . . . 92
d) Scaling moments . . . . . . . . . . . . . . . . . . . . . . . 94
e) Normalized estimates . . . . . . . . . . . . . . . . . . . . 95

IV.3.2 Generative models of synthetic polarization maps . . . . . . . . . . 95
IV.3.3 Statistical assessment and comparison with RWST-based models . 96

IV.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

V Statistical denoising and enhanced component separation methods 99
V.1 The impact of noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

V.1.1 Presentation of the data . . . . . . . . . . . . . . . . . . . . . . . . 100
V.1.2 Impact on power spectrum statistics . . . . . . . . . . . . . . . . . 101
V.1.3 Impact on RWST statistics . . . . . . . . . . . . . . . . . . . . . . 103

a) Impact on first-order coefficients . . . . . . . . . . . . . . 103
b) Impact on second-order coefficients . . . . . . . . . . . . 104

V.1.4 Impact on WPH statistics . . . . . . . . . . . . . . . . . . . . . . . 105
a) Derivation of the statistics . . . . . . . . . . . . . . . . . 105
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Introduction

In March 2014, the BICEP collaboration claimed to have detected an imprint of primordial
gravitational waves in the polarization signal of the cosmic microwave background (CMB).
The announcement was sensational. Indeed, the detection of these so-called primordial
B-modes would have confirmed spectacularly the legitimacy of inflation models, that
describe the first instants of the Universe. The consequences on our understanding of the
origins of the Universe would have been profound, putting an end to a quest that had been
occupying cosmologists for decades. If only the observed signal was not misinterpreted...
The BICEP2 instrument, a polarimeter based in the South Pole, had observed a region
of almost 400 square degrees at 150 GHz during three seasons from 2010 to 2012 [1]. The
collaboration knew that, at this frequency, they would have to deal with contaminants on
top of the CMB. However, although they were convinced they had treated them well, soon
after the official announcement, the Planck collaboration raised doubts on the detection.
Results obtained with the Planck satellite, which were to be published shortly after, were
instead attributing the detected signal to something much less dizzying than gravitational
waves from the very early Universe, namely dust from our own Galaxy. The Planck
collaboration’s dispute prompted the BICEP team to temper their claims. In June,
BICEP conceded that their models of dust were "not sufficiently constrained by external
public data to exclude the possibility of dust emission bright enough to explain the entire
excess signal." [1]. A joint analysis by the Planck and BICEP collaborations, published
in March 2015, finally confirmed these doubts [2].

This eventful episode in the history of cosmological research, not only provided a stark
reminder that prudence is warranted in any scientific analysis, but also shed light on a
significant hurdle on the path to the detection of the primordial B-mode signal, that is
the accurate characterization of the dust emission from our own Galaxy. This dust is part
of the interstellar medium (ISM). It is coupled to the Galactic magnetic field, and emits
a polarized thermal radiation in a frequency range overlapping that of the CMB (see
Fig. 0.1 for an illustration). The spatial distribution of this emission is complex, namely
highly non-Gaussian, while the CMB is very well described by a Gaussian random field.
This thesis focuses on the statistical modeling of the non-Gaussian structure of dust
polarized emission. This non-Gaussianity relates to the very nonlinear physics of the
ISM. Accurate statistical models of the dust emission are thus not only necessary to
ensure a robust detection of primordial B-modes, but would also contribute to improve
our understanding of the physics of the ISM.

Statistical models consist in approximating the statistical properties of a given signal
is a self-consistent way. A spatial statistical model is a random field, and when realizations
can be efficiently drawn from this random field, the model is said to be generative. In

vii



viii Introduction

Fig. 0.1 The BICEP2 field, delimited by dashed white lines, is contaminated
by the thermal emission of interstellar dust at 150 GHz. This emission (in
colors: brown when intense, and blue when weak) is correlated to the structure
of the Galactic magnetic field, which is represented by the drapery patterns (see
Chapter I for further explanations). Credits: ESA/Planck collaboration.

this work, I explore a new avenue for defining generative models of dust emission, made
possible by recent advances in data science. These are based on the wavelet scattering
transform (WST) [3, 4] and wavelet phase harmonics (WPH) [5, 6], that provide multiscale
representations of signals faithfully encoding interactions between scales. These are key
to account for the non-Gaussian properties of the emission. Although the WST and the
WPH are inspired by the structure of convolutional neural networks (CNNs), they do not
involve any training stage, so that generative models based on WST and WPH can be
built from a single map. Moreover, the WST and WPH descriptions allow to analyze dust
emission maps from a new perspective, which can be related to the physical properties of
the ISM to some extent.

This thesis lies at the crossroads of very different fields: cosmology, focusing on the
origin and formation of the Universe; astrophysics, focusing on the physics of the objects
of the Universe; and data science, addressing the general problem of extracting knowledge
from data. My work aims to bring these different fields into a dialogue. Its main outcome
is a new statistical view on the magnetized ISM.

This manuscript is organized as follows. In Chapter I, I introduce the scientific context
of the thesis: the quest motivating CMB polarization measurements and the modeling
of the foreground ISM. In Chapter II, I review the motivations for defining a statistical
model of the dust emission, and describe the state of the art in this field. In Chapter III,
I introduce the WST and employ it to describe dust polarization maps from simulated
data. In Chapter IV, I introduce the WPH, and define generative statistical models of
the same data based on their WST and WPH statistics. In Chapter V, I move from
the "perfect" simulated data and address the problem of defining relevant models from



ix

noisy observational data. This leads to the introduction of a statistical denoising algo-
rithm allowing to retrieve the statistical properties of the noise-free emission as deeply
as possible. The manuscript also includes three appendices. In Appendix A, I introduce
mathematical notions pertaining to random fields and their elementary properties. In
Appendix B, I give elements of Fourier and wavelet analysis that are relevant for this
thesis. In Appendix C, I introduce PyWST and PyWPH, two public Python packages I have
been developing for the purposes of this work.
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Chapter I
From the observation of the cosmic
microwave background to the physics
of the interstellar medium

Since its discovery in 1965 by Penzias &Wilson, the cosmic microwave background (CMB)
has been one of the main focuses of modern cosmology. This primordial signal, which
provides an outstanding window on the early Universe, has been crucial to develop and
constrain models of the early Universe and of the subsequent formation of the large-
scale structure of the Universe. Its observation and interpretation, from the monopole
to the anisotropies, keeps challenging astrophysicists, statisticians, and engineers. If the
fluctuations of temperature are now measured up to scales of a few arcminutes with a
precision only limited by the unavoidable cosmic variance, the polarization signal, on the
other hand, keeps hiding secrets.

Models of inflation, which describe a phase of accelerated expansion at the very begin-
ning of the Universe, explain the origin of the anisotropies of the CMB, and predict the
existence of primordial gravitational waves which would have imprinted on the polariza-
tion signal of the CMB a certain type of patterns called B-modes. While remaining highly
speculative, these models would be spectacularly confirmed and constrained if one could
find these primordial B-modes in the polarization signal of the CMB. For this reason,
these B-modes are eagerly sought by cosmologists and motivate a variety of upcoming
CMB polarization experiments.

Since the Planck mission, the search for primordial B-modes has become closely en-
twined with the physics of the interstellar medium (ISM). Indeed, the thermal emission of
interstellar dust from our own Galaxy severely contaminates the CMB signal, acting as a
foreground to the primordial signal. Component separation methods still fail to properly
disentangle the finest details of the polarization signal of the CMB and the filamentary
structures of the dust foreground. Polarization properties of the dust emission are the
consequence of the alignment of nonspherical dust grains with the Galactic magnetic
field. A detailed characterization of the properties of these nonspherical grains and of
the pervasive Galactic magnetic field is needed to hopefully, one day, detect cosmological
B-modes.

This chapter introduces this broad context. We first give an overview of how fas-

1
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cinating CMB science can be for cosmologists who aim at building a consistent picture
describing almost 14 billion years of history of our Universe with essentially a single model
involving a few parameters only. Then, we introduce the usual observables characterizing
the CMB, namely Stokes parameters I, Q, and U , before presenting how the Planck satel-
lite has measured them on the whole sky, thus providing invaluable data for cosmologists
and astrophysicists. Finally, we describe the beautifully complex physics of the ISM and
of its interstellar dust grains, which thermally radiate on top of the CMB and mask its
finest details.

I.1 The first light of the Universe
Modern cosmology started with the discovery of the expansion of the Universe. We review
this incredible discovery and show how it suggested that photons from the early Universe
could be observable at present time. We give some keys to understand the stakes in the
observation of this first light of the Universe, called in an esoteric way cosmic microwave
background (CMB).

I.1.1 An expanding Universe

The discovery of the expansion of the Universe in the 1920s was made possible thanks
to the conjunction of remarkable observations and the emergence of a theory that has
profoundly changed our understanding of the world.

The astronomer Vesto Slipher, at the end of the 1910s, had already remarked that most
of the observable spiral nebulae were redshifted, i.e. that their electromagnetic spectrum
of emission was almost always shifted toward lower frequencies. Of course he did not
know that these nebulae were in fact what we now call galaxies. Indeed, the nature of
galaxies was still mysterious at that time, and they were simply called nebulae because
of their blurry aspect. Nevertheless, it did not prevent him from trying to explain their
observed redshifts. The common explanation for that, at that time, and even today, is
that this frequency shift must be attributed to a relative motion between the observer (in
that case, us), and the emitter (galaxies) in the radial direction. This phenomenon, called
Doppler effect, is well described mathematically and relates frequency shifts to the radial
relative velocity between the observer and the emitter. Thanks to the measurements of
these redshifts, defined by z = λo/λe − 1, where λe is the wavelength at the emission
(non-distorted) and λo is that measured by the observer (distorted), Slipher determined
the apparent radial velocity of these objects and found that it was as if galaxies were
moving away from us... [7, 8]

In parallel to Slipher’s observations, Einstein and his theories of relativity (special and
general) had already started a revolution in science: time and space cannot be treated
in an independent way [9], and even more shocking, the matter, and more generally,
the energy, deforms the geometry of this so-called spacetime [10]. After such concep-
tual breakthroughs, it seemed almost natural for theoreticians to apply this new general
relativity theory to describe the Universe as a whole. Assuming that the large scale
Universe can be described as homogeneous and isotropic (what is called the cosmological
principle), the geometry of the four-dimensional spacetime, defined by its metric, for-
mally allows the idea of an expansion of space. Friedmann [11], then in an independent
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way, Lemaître [12], established and interpreted the expression of what we call today the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which, assuming no curvature of
space1, reads in cartesian coordinates (t, x, y, z):

ds2 = −c2dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (I.1)

with c the speed of light, and a(t) a function of time called the scale factor. This metric
defines distances in spacetime, and what should draw the attention of the reader is the
fact that this scale factor function a(t), which depends on the time variable t, acts as
a scaling to the spatial part of this metric. Therefore, within this formalism, spatial
distances evolve in time because of this scale factor. This is precisely what the expansion
of the Universe is about.

Lemaître in 1927 [12], and Hubble in 1929 [14], soon realized that this scale factor,
a degree of freedom in the geometry of the Universe, may explain the observed redshift
of distant galaxies. In the framework of general relativity, the measured redshift z of
galaxies, becomes related to the scale factor by:

z(te) = a(t0)
a(te)

− 1, (I.2)

where te is the time of light emission, and t0 is that of the observation, i.e. "today’s
time". By convention, we usually define a(t) such that a(t0) = 1, so that z = 0 refers to
today’s time and strictly positive values correspond to the past. Within this framework,
the observed redshift in the spectrum of galaxies is no longer the signature of a relative
velocity between galaxies, a Doppler shift, but rather interpreted as the consequence of the
expansion of space itself. Therefore, to explain the tendency for galaxies to be redshifted,
the scale factor a(t) must be an increasing function of time.

General relativity tells us that the geometry of the homogeneous Universe, described
by the FLRW metric, is governed by its content in energy (or, in an equivalent way, in
matter). This statement naturally raises the question of what the Universe is made of.
This has been one of the main focuses of cosmology since the discovery of the expansion
of the Universe, and even if we are far from having solved it, a simple phenomenological
model explaining most of our cosmological observations has progressively emerged. This
model, called the standard cosmological model, or ΛCDM model, distinguishes different
forms of energy in the Universe:

• dark energy (denoted by Λ), a mysterious yet dominant form of energy thought to
be responsible of the acceleration of the expansion of the Universe today [15, 16],

• dark matter, an unknown form of matter, thought to be non-baryonic, cold (i.e. with
typical velocities far smaller than the speed of light), and interacting gravitationally
with matter,

• baryonic matter, meaning ordinary matter, primarily constituted of baryons and
notably referring to all the visible Universe,

• radiation, made of photons and neutrinos.
1Current measurements are consistent with a null spatial curvature [13].
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We refer to general textbooks for a detailed presentation of the ΛCDM model as well
as its limits (e.g. [17, 18]). However, we choose to discuss here one central equation
of this model which formally shows the links between the geometry and the content in
energy of the Universe, and illustrates the challenges of modern cosmology. Introducing
the Hubble parameter H(t) = ȧ(t)/a(t), with ȧ the time derivative of a, as well as the
cosmological density parameters evaluated at present time ΩΛ,0, Ωc,0, Ωb,0, and Ωr,0,
corresponding to the density parameters of the dark energy, cold dark matter, baryonic
matter, and radiation, respectively,2 the first Friedmann equation in the simpler case
where we assume a flat Universe (i.e. with no spatial curvature) reads:(

H(t)
H0

)2
= Ωr,0
a(t)4 + Ωc,0 + Ωb,0

a(t)3 + ΩΛ,0, (I.3)

where H0 = H(t0) is the Hubble constant. On the right hand side, essentially stands
the sum of the energy densities of each of the components of our Universe. We first
see that these densities scale differently with the expansion factor depending on their
nature. The expansion of the Universe thus suggests that in the past, when a(t) was
much smaller, radiation must have been the dominant form of energy (what is called
radiation era), before subsequently giving way to the dark and baryonic matter (matter
era), while today the dark energy seems to be the dominant form of energy (dark energy
dominated era). The behavior of the scale factor now clearly appears as depending on a
few parameters measurable at present time: the Hubble constant, and the cosmological
density parameters. The values of these parameters are well measured today, and we
report those determined by the Planck mission in Table I.1. In particular, these allow to
give an age to the Universe, which is identified to the time tU at which the scale factor
reached zero. From Eq. (I.3), one gets the following expression for tU:

tU = 1
H0

∫ 1

0

1
a
√

Ωr,0a−4 + (Ωc,0 + Ωb,0)a−3 + ΩΛ,0
da, (I.4)

so that, according to Planck measurements, the Universe would be approximately 13.79
billion years old [13]. Note that the moment at which the scale factor vanishes corresponds
to a singularity in the metric of the spacetime, which is often called Big Bang, but this is
no more than a mathematical curiosity as far as we know since our physical theories are
no longer valid to describe this moment. It is also interesting to notice that dark energy
and dark matter constitute almost 95% of the content in energy of the Universe today,
meaning that in the framework of this standard model, the vast majority of our Universe
seems to be governed by some unknown form of energy and matter. For these reasons, the
nature of dark energy and dark matter is without any doubt, one of the greatest puzzles
of modern cosmology.

In the 1940’s, the expansion of the Universe introduced the idea of a hot Big Bang
model, describing the early Universe as much more dense and hot than what it is today. In
this framework, in 1948, Alpher, Bethe and Gamow attempted to explain the observable
relative abundances of chemical elements in the Universe, paving the way to what we

2The cosmological density parameter ΩX is the ratio of the average density of matter/energy of the
component X to what is called the critical density, which corresponds to the density at which the Universe
would stop expanding after an infinite time [17].
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Ωc,0 Ωb,0 Ωr,0 ΩΛ,0 H0 [km.s−1.Mpc−1]

0.27 0.049 5.4× 10−5 0.68 67

Table I.1 – Measured values of the Hubble constant and the cosmological density param-
eters at present time, as determined by the Planck mission [13], except for Ωr,0 which is
estimated based on the temperature of the CMB [19, 17]. These values are given on an
indicative basis with two significant digits only. The accurate measurements, as well as
their error bars, depend on the combination of data used to constrain these parameters
(see [20]).

now call the big bang nucleosynthesis theory (BBN) and which predicts the abundance of
light elements (mostly hydrogen, helium, and their isotopes) in the Universe remarkably
well [21, 20]. A few months later, within the same picture, Gamow, Alpher, and Herman,
predicted that a relic radiation of the early Universe should be observable today, with an
estimated temperature of 5 K [22, 23]...

I.1.2 The discovery of the cosmic microwave background
Within the hot Big Bang model, the picture of the early Universe is that of a soup of
particles in a thermodynamical equilibrium which has progressively cooled down as the
Universe expanded. Particles, which were all coupled at the beginning of the Universe,
successively decoupled from each other with the decrease of the temperature and of the
energy densities. Right after the BBN, the Universe was primarily made of a fully ionized
plasma composed of nuclei of hydrogen and helium, electrons and photons in strong inter-
action. The temperature had to be high enough to prevent a recombination of electrons
with nuclei. Photons were continuously scattered by electrons, mostly through Compton
scattering, making the plasma completely opaque to radiation. The spectral radiance
Bν(T ) of the radiation at that time is thought to correspond to that of a blackbody
radiation:

Bν(T ) = 2hν3

c2
1

e
hν
kT − 1

, (I.5)

where k is the Boltzmann constant, and h is the Planck constant. Due to the expansion
of the Universe, it can be shown that the temperature of this blackbody radiation as a
function of time, or in an equivalent way as a function of the cosmological redshift z,
must vary as T (z) ∝ 1 + z (note that this linear law is supported by observations, see e.g.
[24]). Therefore, one expects that with the expansion, the temperature of the radiation
could sufficiently decrease to allow the recombination of electrons with nuclei. This re-
combination happened at a cosmological redshift zrec ≈ 1100 [13], which corresponds to
a time situated approximately 380,000 years after the Big Bang, and when the tempera-
ture of the Universe was approximately 3000 K. Right after this recombination, photons
were finally able to freely propagate through the Universe, defining what we call the last
scattering surface, and giving rise to the cosmic microwave background (CMB), that is
the first light of the Universe.

At the beginning of the 1960s, Robert Dicke and his colleagues were precisely looking
for this cosmic radiation. They built a radiometer designed to find it, but were scooped
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by two researchers of Bell Telephone Laboratories, Arno Penzias and Robert Wilson, who
found out, by coincidence, an unexpected excess of antenna temperature3 while testing
their own radiometer in 1964 [25]. They reported an excess of 3.5 ± 1 K of unknown
origin at 4080 MHz. It did not take long for Dicke and his colleagues Peebles, Roll and
Wilkinson, to interpret this result as a signature of a cosmic radiation coming straight
from the very beginning of the Universe: the CMB [26]. Since this discovery, it has been
shown that the observed CMB corresponds to an almost perfect blackbody radiation at
temperature T0 = 2.725 K [19], confirming in a spectacular way the picture of the early
Universe painted by the hot Big Bang model.

We have seen that the ΛCDM model, and the picture of the hot Big Bang model,
explains very well the homogeneous Universe. It explains the expansion of the Universe,
the relative abundance of light elements in the Universe, and the CMB. However we know
that the Universe cannot be assumed to be homogeneous at all scales, since the observed
distribution of galaxies and dark matter is not homogeneous. The Universe exhibits a
structure which is that of the cosmic web, and which requires to include in this model an
explanation for these inhomogeneities [27].

I.1.3 From inhomogeneities to anisotropies

The large-scale structure of the Universe, that is the distribution of dark matter and
galaxies at scales typically larger than ∼ 1 Mpc, exhibits a clear inhomogeneity. Patterns
of galaxies form the so-called cosmic web, made of filaments, sheets, walls, and voids.
These are thought to arise from the nonlinear evolution of primordial density fluctuations
through gravitational instability in an expanding Universe [27, 28]. Therefore, a signa-
ture of these primordial density fluctuations is expected in the CMB, taking the form of
anisotropies in the signal.

These primordial anisotropies in the CMB are so small that it took almost 30 years
after the discovery of the CMB to find them. The first detection was made with the
COBE satellite in 1992 [31], and ever since, cosmologists have been trying to improve the
measurements, driving the transformation of cosmology into the high-precision science it
is today. Thanks to the WMAP mission in the 2000s [32], and the Planck mission in the
2010s [13], we now have a detailed view of the fluctuations of temperature of the CMB on
the whole sky. We show in Fig. I.1a the map of the fluctuations of the CMB temperature
on the sky as determined by the Planck mission. This map shows that typical fluctuations
of temperature are approximately 100 µK, which gives relative fluctuations in tempera-
ture of the CMB of ∼ 10−5, exhibiting more quantitatively the need for highly accurate
measurements for the proper detection of these anisotropies. A statistical characterization
of the map shows that the fluctuations of the CMB temperature seem to have Gaussian
statistics and to be statistically isotropic [33]. In other terms, this means that the CMB
is well modeled from a statistical point of view by a realization of an isotropic Gaussian
random field on the sphere (see Appendix A for a presentation of Gaussian random fields
and their elementary properties). Consequently, all the statistical information included in
these fluctuations of temperature across the sky, simply called temperature anisotropies,
rests in the angular power spectrum of this map, which is shown in Fig. I.1b. On this

3The antenna temperature TA describes how much noise an antenna produces in a given environment.
It is related to the noise power per unit bandwidth PN by PN = kTA.
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(a) Map of the fluctuations of temperature of the CMB (SMICA map) in Mollweide
projection. Figure is taken from [29].
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(b) Angular power spectrum of the temperature map of the CMB. The solid line corre-
sponds to the best-fit of the ΛCDM model [30]. Figure is taken from [13].

Fig. I.1 Temperature map of the CMB and its angular power spectrum as
determined by the Planck mission [13].

figure, we see that this angular power spectrum is very well fitted by the ΛCDM model,
thus giving extremely accurate estimates of its parameters (some of which being shown
in Table I.1). Note that the peaks in the angular power spectrum show the imprint of
acoustic oscillations in the primordial plasma due to the tight coupling between photons
and baryonic matter.

We only show here the anisotropies of the CMB temperature, but anisotropies in the
CMB linear polarization signal are also expected due to the effect of Thomson scatter-
ing4 in the last scattering surface [34, 17]. These anisotropies in the polarization signal
have been meticulously observed, but the measurements are not sufficiently accurate
to answer current cosmological questions, such as the existence of primordial gravita-
tional waves [35]. Indeed the signal is weaker, so the instrumental noise quickly becomes
problematic, and the so-called foregrounds, mainly due to interstellar dust and Galactic

4Thomson scattering refers to the low-energy limit of Compton scattering.
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synchrotron emission are prominent contaminants. We will give more details on these
contaminants in the next section. In this thesis, the focus is the modeling of the dust
foreground, which is motivated by this need to improve our measurements of the CMB
polarization signal.

To account for the observed inhomogeneities in the last scattering surface, the FLRW
metric must be perturbed, giving rise to scalar, vectorial, and tensorial degrees of free-
dom [18, 17]. Scalar perturbations generate temperature anisotropies and a certain type of
polarization signal, called E-modes, while vectorial and tensorial perturbations, in addi-
tion to generating temperature anisotropies and E-modes, must generate complementary
patterns in the polarization signal, called B-modes [36, 37, 38]. The detection of tensorial
perturbations, corresponding to primordial gravitational waves, is one of the main goals
of modern cosmology. While CMB E-modes have already been well measured, primor-
dial B-modes still remain undetected, even if we were able to set upper limits to their
amplitude [2, 30, 39]. Note that the current constraints on the B-modes tensor-to-scalar
ratio r < 0.06 (95% confidence level [40]) are expected to be significantly improved by the
next generation of CMB experiments, such as ACT [41], SPIDER [42], LiteBIRD [43],
PICO [44], the Simons Observatory [45], and CMB-S4 [46], with a detection limit goal of
r ' 10−3. Nevertheless, any claim to the detection of cosmological B-modes will have to
be critically assessed against alternative explanations involving Galactic foregrounds as
we will discuss it in the next section.

Another question remains: what is the origin of these perturbations in the FLRW
metric? So-called inflation models, which were imagined to solve the defects of the hot
Big Bang model (including the horizon, smoothness, flatness, and monopole problems [18,
17]), could also give a satisfactory answer [47, 48]. These models, which describe the very
first instants of the Universe postulating a phase of accelerated expansion, explain the
origin of these perturbations as arising from a quantum noise whose fluctuations would
have been frozen out as the Universe was inflating. Still highly speculative, models of this
inflationary Universe demand to be confirmed by observations. As most inflation models
predict tensorial modes in the perturbed FLRW metric, the detection of their imprint on
the CMB B-modes would help to confirm the validity of these models and constrain their
parameters [39].

I.2 Observing the CMB

I.2.1 The observables: Stokes parameters

The CMB radiation is usually described in terms of Stokes parameters. These are conve-
nient to describe the intensity and polarization of a given beam of light as they directly
correspond to sum or differences of measurable intensities.

Let us consider a plane wave propagating along the direction (Oz), and let us call
Ex and Ey the complex components of its corresponding electric field E(r, t) in a fixed
orthonormal basis (êx, êy). We thus have:

E(r, t) = Ex(r, t)êx + Ey(r, t)êy. (I.6)
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The Stokes parameters are a set of 4 parameters, called I, Q, U , and V , defined as follows:

I = 〈|Ex|2〉+ 〈|Ey|2〉, (I.7)
Q = 〈|Ex|2〉 − 〈|Ey|2〉, (I.8)

U = 2 Re
(
〈ExE∗y〉

)
, (I.9)

V = −2 Im
(
〈ExE∗y〉

)
, (I.10)

where ∗ denotes the complex conjugate, and 〈·〉 corresponds to a time average related
to the instrument. The parameter I is simply the total intensity, Q and U measure the
intensity of linear polarization, and V measures the intensity of circular polarization. By
construction, the Stokes parameters are constrained by the following inequality:

Q2 + U2 + V 2 ≤ I2, (I.11)

which becomes an equality in the case of a monochromatic plane wave.
To better interpret these parameters, let us rewrite them in a more "operational" form.

We define two additional bases (êx′ , êy′) and (êl, êr) from transformations of the initial
one (êx, êy) with:

êx′ = 1√
2

(êx + êy) , êy′ = 1√
2

((−êx + êy) , (I.12)

êl = 1√
2

(êx + iêy) , êr = 1√
2

(êx − iêy) . (I.13)

(êx′ , êy′) is simply a 45◦ rotation of (êx, êy), while (êl, êr) defines a circular basis. With
these new definitions, we can rewrite the expressions of the Stokes parameters as follows:

I = 〈|Ex|2〉+ 〈|Ey|2〉, (I.14)
Q = 〈|Ex|2〉 − 〈|Ey|2〉, (I.15)
U = 〈|Ex′ |2〉 − 〈|Ey′ |2〉, (I.16)
V = 〈|Er|2〉 − 〈|El|2〉, (I.17)

where (Ex′ , Ey′) and (El, Er) are the corresponding transformed coordinates of E. Now
the Stokes parameters effectively appear as sums or differences of measurable intensi-
ties. We show in Fig. I.2 a few elementary examples of correspondences between the
polarization of a monochromatic plane wave and the values of its Stokes parameters.

An important property of the Stokes parameters stems from the way they are trans-
formed when rotating the initial basis (êx, êy). For a rotation of this frame by a direct
angle θ, they are transformed as follows:

I −→ I ′ = I, (I.18)
Q+ iU −→ Q′ + iU ′ = e−2iθ (Q+ iU) , (I.19)

V −→ V ′ = V, (I.20)

where we introduce the complex variable Q+ iU as a convenience to jointly denote Q and
U . Therefore, we see that I and V are invariant under the rotation of the initial basis,
while Q+ iU transforms as a spin-2 quantity.
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Fig. I.2 Correspondence between polarization and values of the Stokes param-
eters on a few common examples in the case of a monochromatic plane wave.

In a cosmological context, linear polarization is not often studied straight from the
raw Q and U observables, but rather in terms of E and B-modes [49]. E and B-modes
are nonlocal linear transforms of Q and U defined as follows in Fourier space (see e.g.
[35]): (

Ê(k)
B̂(k)

)
= 1√

2

(
cos 2ϕk sin 2ϕk
− sin 2ϕk cos 2ϕk

)(
Q̂(k)
Û(k)

)
, (I.21)

where ϕk is the angle that k makes with the x-axis. This definition is given here in a
flat-sky approximation, although, in the literature, it is common to find definitions of E
and B-modes on the sphere. We refer the reader to [37, 35] for such definitions. The
motivation for this transformation is twofold. First, this decomposition of the Q+ iU
variable is expected to disentangle scalar primordial fluctuations from vectorial and ten-
sorial ones [36]. As explained in Sect. I.1.3, vectorial and tensorial fluctuations in the
primordial plasma before the decoupling would give rise to a non-zero B-mode signal
in the CMB, while scalar fluctuations cannot source any B-mode signal. Second, con-
trary to the Q+ iU variable which is a spin-2 variable, E and B variables are scalar and
pseudo-scalar5 variables, respectively, which means in particular that these variables are
invariant under any rotation of the initial basis chosen for the measurement of the polar-
ization signal. In this thesis, we will work with the Q + iU variable only to characterize
dust polarization, but we will see in Sect. I.3.3 that important statistical properties of the
dust signal are formulated in terms of these E and B variables.

5Contrary to scalar quantities, the sign of pseudo-scalar quantities is inverted under a parity inversion.
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Note that we will not make any further mention of the Stokes parameter V since it
is expected to be null for the CMB. Indeed, Thomson scattering in the last scattering
surface, which is at the source of linear polarization in the CMB as explained above,
cannot generate any circular polarization (see e.g. [35]).

I.2.2 The Planck mission
The ESA Planck mission is the third space mission dedicated to the measurement of the
anisotropies of the CMB [13, 50] (after COBE in the 90s [31, 51] and WMAP in the 2000s
and early 2010s [32, 52]). The Planck satellite was launched in 2009, after almost 20
years of preparation, from Kourou in French Guiana. The scientific programme of the
mission was clear: "Planck is designed to extract essentially all information available in
the temperature anisotropies and to measure CMB polarization to high accuracy." [53].
Initially planned to scan the sky during 18 months, the Planck satellite was finally able
to do it during more than 4 years, going from 2009 to 2013. It was situated at the L2
point, meaning it was continuously along the Sun-Earth axis, situated at approximately
1.5 million kilometers away from Earth and in the direction opposite to the Sun.

The Planck satellite was made of two instruments called LFI and HFI (for Low
Frequency Instrument and High Frequency Instrument, respectively), with a 1.5-meter-
diameter primary mirror, which were designed to observe the microwave and submillime-
ter6 sky in 9 frequency bands ranging from 30 to 857 GHz (corresponding to wavelengths
ranging from 1 cm to 350 µm, respectively), and at resolutions ranging from 32′ to 4′,
respectively [13]. The satellite needed to be actively cooled down to reach temperatures
down to 0.1 K for the bolometers of the HFI instrument.

Thanks to a sophisticated data processing [54, 55], Planck produced 9 all-sky fre-
quency maps in temperature (i.e. in total intensity I), and linear polarization Q and U .
We show in Fig. I.3 the 9 temperature frequency maps as obtained by the Planck mis-
sion, and once removed the dipole component corresponding to the Doppler distortion
due to the relative velocity of the Planck satellite with respect to the CMB reference
frame. These maps are shown in Galactic coordinates with the Galactic center in the
middle of this projection. We clearly see that they significantly differ from the CMB map
displayed in Fig. I.1b. What looks like the CMB appears to be superimposed to various
other emissions that are spatially correlated with the structure of our own galaxy, the
Milky Way. This illustrates the problem faced in retrieving the CMB signal from these
observations. Retrieving the CMB demands accurate statistical techniques to disentangle
"foregrounds", of astrophysical nature, from the primordial cosmological signal. These
techniques, called component separation methods, are discussed in the next subsection.

The scientific outcome of the Planck mission is impressive. The mission produced
the most accurate sky maps, in temperature and in linear polarization, of the CMB
anisotropies, thus giving the most detailed snapshot of the early Universe when it was
approximately 380,000 years old. It also provided outstanding sky maps of the astrophys-
ical foregrounds to the CMB allowing to probe the physics of the interstellar medium

6The microwave domain usually refers to the radio frequencies ranging from 300 MHz to 300 GHz
(corresponding to wavelengths ranging from 1 m to 1 mm, respectively), whereas the submillimeter domain
typically refers to the range from 300 GHz to 1 THz (corresponding to the range from 1 mm to 300 µm,
respectively). Nevertheless, there is no consensus on these definitions, and these may slightly vary from
one scientific community to another.
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Fig. I.3 All-sky temperature fluctuations maps as obtained by the Planck mis-
sion for the 9 frequency bands of the satellite. The Doppler dipole component has
been removed. Sky maps correspond to Mollweide projections and are displayed
in Galactic coordinates with the Galactic center in the middle and longitude
increasing to the left. Figure is taken from [13].

and that of the large-scale structure of the Universe [29, 56, 57, 58]. It extracted the
temperature angular power spectrum of the CMB with a precision only constrained by
the cosmic variance, an unavoidable variance due to the fact that we can only observe
one CMB, down to angular scales of ∼0.1◦. It also provided one of the most accurate
measurements of the angular power spectra of the polarization signal, even if it clearly
showed that improvements are needed in that direction to answer fundamental questions
of primordial cosmology [30, 2]. From these power spectra, the Planck mission, com-
plemented by other probes, was able to constrain with an outstanding accuracy the 6
parameters of the ΛCDM model. This model is able to fit these power spectra with such
a precision that its legitimacy to describe the dynamical evolution of the Universe is now
undeniable [20, 33]. These results also give strong constraints on the extensions of this
model, including inflation models [59, 39].

I.2.3 A component separation problem

As illustrated in Fig. I.3 with Planck data, measuring the anisotropies of the CMB is
not straightforward since the CMB emission is contaminated by various other emissions
regardless of the frequency. These so-called foregrounds correspond to diffuse emissions
and compact sources, originating both from our Galaxy and beyond, and for most of them,
with a inhomogeneous distribution on the sky as well as complex frequency dependencies.
Therefore, component separation methods are essential to disentangle the CMB from these
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Fig. I.4 Frequency dependence of the RMS brightness temperature for the com-
ponents of the microwave sky in intensity I (left), and in linear polarization in-
tensity

√
Q2 + U2 (right). The grey bands show the bandpasses of the frequency

channels of the Planck satellite. Figure is taken from [13].

various foregrounds. For the Planck mission, several statistical methods have been used,
each of them having its own advantages and disadvantages. Almost all of these methods
focused on retrieving the CMB emission, and some of them also produced maps of the
foregrounds, which are highly valuable for astrophysicists [60, 61, 29]. We briefly review
the variety of foregrounds to the CMB at the frequencies of observation of the Planck
satellite, before discussing some of the statistical methods that have been used for Planck
data to perform these component separations, focusing on those that produced maps of the
thermal dust emission. We refer to [29] and references therein for a detailed presentation
of the methods used for the Planck mission, and to [62] for a (pre-Planck) review on
classical statistical approaches of diffuse source separation for CMB observations.

a) Foregrounds

The various foregrounds that have been identified as significant contaminants for the
observation of the CMB temperature for the Planck mission are (see e.g. [61]):

• the synchrotron emission: diffuse emission due to the spiraling of relativistic elec-
trons around Galactic magnetic fields,

• the free-free emission (or bremsstrahlung emission): of Galactic origin, correspond-
ing to the radiation produced by collisions between electrons and ions,

• the thermal dust emission, simply called dust emission or dust foreground in the fol-
lowing: it is the main focus of this thesis, due to the thermal emission of interstellar
dust from our own Galaxy,

• the spinning dust emission, also known as anomalous microwave emission: thought
to be the emission of small and fast spinning dust grains with a non-zero electric
dipole moment,

• rotational spectral lines of the CO molecule: line emission detected in Planck 100,
217, and 353 GHz frequency channels,
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• the thermal Sunyaev-Zeldovich emission: of extragalactic origin, corresponding to
the distortion of CMB photons scattering off electrons from hot galaxy clusters
(inverse Compton scattering),

• the cosmic infrared background (CIB) emission: of extragalactic origin, correspond-
ing to the diffuse redshifted thermal emission of dust in distant galaxies,

• various extragalactic point sources: usually removed in preprocessing.
We should also add to this list the instrumental noise and systematics, which are not actual
"foregrounds" although they act as such. This non-exhaustive list shows how complex the
microwave sky already is. Fortunately, these contaminants are not significant at all scales
and frequencies, and most of them are not expected to exhibit linear polarization. We
show in Fig. I.4 the frequency dependence of the root mean square (RMS) brightness
temperature for the components of the microwave sky in temperature and polarization.
We notably see that in polarization, for the Planck sensitivity, the only foregrounds are
the synchrotron emission, and the thermal dust emission. In practice, we will see that
the instrumental noise is also a main contaminant of the polarization signal.

For B-mode detection, we naturally want to design experiments focusing on frequen-
cies where the CMB is the most visible relatively to its foregrounds. Based on Fig. I.4,
targeting frequencies around 100 GHz seems reasonable. At 100 GHz, the CMB and the
dust foreground are the two dominant components, which motivates the need for an ac-
curate modeling of the dust foreground. To illustrate the component separation problem
addressed by the search of primordial B-modes, we show in Fig. I.5 an artist view of what
a satellite typically sees when looking at the polarized sky at 100 GHz.

b) Component separation methods

Several component separation methods have been employed for the Planck mission. These
were thought to be representative of the variety of approaches in the literature at that
time. We briefly discuss Commander, SMICA, and GNILC methods, which all have
produced foregrounds maps, including maps of the dust thermal emission.

Commander The Commander algorithm ([63, 64, 61]) adopts a parametric approach.
It relies on parametric phenomenological models for each component of the microwave sky,
and fits the corresponding parameters in a Bayesian framework. The observed sky di at a
frequency channel νi is modeled as a sum of components sCMB

i , sdust
i , ..., ni (instrumental

noise), that is:
di = sCMB

i + sdust
i + · · ·+ ni. (I.22)

In particular, the frequency dependence of the dust component sdust
i , corresponding to the

thermal emission of interstellar dust grains, is modeled with that of a modified blackbody
emission (MBB):

sdust
i (r) ∝ νβ(r)

i Bνi(T (r)), (I.23)
thus introducing two parameters depending of the position r: the spectral index β(r) and
the temperature T (r).7 With ν0 a reference frequency, the model of the dust component

7Here, sdust
i corresponds to a specific intensity, contrary to [61] where components are described in

terms of brightness temperature, thus explaining slight differences between the formulae.
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Fig. I.5 Artist view of the component separation problem addressed by the
search for B-modes in the CMB. The satellite instrument, here the Planck satel-
lite, shown at the center of the image, observes the sum of the polarized emission
of the Galactic dust (foreground) and of the CMB (background). Credits: Planck
collaboration, Canopée.

becomes:
sdust
i (r) = A(r)

(
νi
ν0

)β(r) Bνi(T (r))
Bν0(T (r)) , (I.24)

where A(r) corresponds to the amplitude of the dust emission at the reference frequency ν0
and the position r. The set of parameters describing the dust component thus includes
an amplitude map A, a spectral index map β, and a temperature map T . Calling θ the
complete set of parameters of the full sky model (including A, β and T ), the Commander
algorithm aims at finding the maximum of the so-called posterior distribution p(θ|d) which
reads:

p(θ|d) = p(d|θ)p(θ)
p(d) ∝ L(θ)p(θ), (I.25)

where L(θ) = p(d|θ) is called the likelihood and p(θ) is called the prior distribution of the
parameters. Assuming a Gaussian distribution for the noise as well as its independence
across channels, the likelihood becomes a multivariate Gaussian distribution only depend-
ing on the noise covariance. After a relevant choice for the prior distribution, the fit finally
consists in finding the parameters that maximize this posterior distribution. This is done
using a method called Gibbs sampling [65], which avoids a numerically intractable direct
sampling of the posterior distribution (indeed the number of parameters can go up to
several hundred million).

GNILC The generalized needlet internal linear combination (GNILC) algorithm ([66])
has been originally applied to Planck temperature data to disentangle CIB anisotropies
from dust emission [67]. In [29], it was also applied to polarization data focusing on
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the extraction of a dust foreground freed from noise and CMB contaminations. This
algorithm works in a spherical wavelet space, called needlet space [68, 69], thus allowing
a separation of the data both spatially and spectrally. More precisely, calling d(j)

i the
observed map at a frequency νi that has been filtered with a needlet at a scale j, for
example, in the context of polarization data (Q or U data), we have:

d
(j)
i = s

CMB,(j)
i + s

Gal,(j)
i + n

(j)
i , (I.26)

where sCMB,(j)
i , sGal,(j)

i , and n(j)
i correspond to the CMB, Galactic, and noise components

filtered at scale j, respectively. The Galactic component sGal,(j)
i is estimated with a local

linear weighting of the {d(j)
i }i maps:

ŝ
Gal,(j)
i (r) =

∑
i′

W
(j)
ii′ (r)d(j)

i′ (r). (I.27)

The weighting matrixW (j) of size Nchan×Nchan, which thus depends on the position r, is
built to minimize the variance of the estimator while adapting to local contamination levels
of the target signal (see [29] for a definition ofW (j)). This latter constraint necessitates to
estimate locally the frequency-frequency covariance matrices of the contaminants (here,
the CMB and the noise), which may require prior information on the power spectrum of
these contaminants.

SMICA The SMICA (spectral matching independent component analysis) algorithm [70]
introduces a blind method which relies on very few assumptions on the data: known num-
ber of foregrounds, and statistical independence between the foregrounds and the CMB.
This algorithm is performed in spectral space via a spherical harmonic decomposition of
the signals. Each mode of the CMB sCMB

lm is estimated as follows:

ŝCMB
lm = w†l dlm, (I.28)

where dlm is a vector of Nchan components, one for each frequency channel, and wl is a
vector of Nchan weights, which does not depend on m. These weights are determined in
order to minimize the variance of the estimator for a given l, which gives:

wl = Cl(θ)−1a

a†Cl(θ)−1a
, (I.29)

where a is a vector of Nchan components describing the spectrum of the CMB (assumed
to be that of a blackbody), and Cl(θ) is a frequency-frequency covariance matrix of size
Nchan ×Nchan depending on parameters θ that have been fitted so that Cl(θ) "matches"
the empirical covariance matrix of the observed signal (see e.g. [29] for the definition of
the matching criterion). In practice, the model for the covariance matrix Cl(θ) is quite
generic once the independence between the foregrounds and the CMB is assumed which
explains the "blind" aspect of the method (see [29]), however this formalism allows some
flexibility to add prior information on the components. In [29], this method has been
adapted for the estimation of the dust foreground on polarization data with no specific
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assumption on the properties of the foreground (except that the dust polarization fore-
ground is dominant at 353 GHz, cf Fig. I.4).

From this very brief presentation of the Commander, GNILC, and SMICA algorithms,
let us already make a few remarks. For Commander, the choice of the model for each
of the components is obviously crucial, and such a parametric method motivates the
need for a relevant model for the dust foreground. However, a parametric approach
requiring a detailed knowledge of the components is not the only way, as the SMICA, and
GNILC methods illustrate. SMICA can perform a fully blind component separation, only
requiring statistical independence between the CMB and the foregrounds, while GNILC
in some sense goes halfway between Commander and SMICA, using prior information on
the local power spectrum of the contaminants when available. Finally, let us remark that
all of these methods strongly exploit the frequency dimension of the observations, either
by assuming spectral models for the various components, or defining estimators from
linear weightings of the various frequency maps. On the contrary, the spatial information
of the various emissions seems to be poorly exploited when it is not simply ignored.
One major development of this thesis is the idea that the dust foreground has very rich
spatial properties, namely strong interactions between scales, that deserve to be taken
into account for the improvement of component separation methods.

Let us finally mention that the research for the development of component separation
methods has not stopped with the Planck mission, and various strategies are currently
in development for the improvement of these methods in the context of the search of
primordial B-modes (see e.g. [71, 72, 73, 74]).

I.3 The Milky Way, its interstellar medium, and the dust fore-
ground

I.3.1 The Milky Way and the ISM

Our galaxy, the Milky Way, is no different from most observable spiral galaxies: it is
made of stars, gas, and solid particles, which are all immersed in a pervasive magnetic
field, radiation, and cosmic rays. The dynamical properties of stars far from the center
of the Galaxy also suggest a gravitational interaction with invisible dark matter which is
thought to constitute 90% of the total mass of the Galaxy. The structure of the Galaxy
is mainly the consequence of gravitational interactions. Most of the visible part of the
Galaxy lies within a thin disc with a radius of approximately 15 kpc, and a width of a
few hundred parsecs. In terms of mass, the total mass within this disc is ∼ 1011 M�,
including ∼ 5 × 1010 M� of stars, ∼ 5 × 1010 M� of dark matter, and ∼ 7 × 109 M� of
interstellar gas [75]. In this picture, our solar system is located 8.5 kpc away from the
Galactic center, orbiting around it at approximately 220 km/s.

The interstellar medium (ISM), referring to the medium which stands between the
stars, is a turbulent mixture of gas and dust grains, coupled to the Galactic magnetic
field. While roughly accounting for ∼ 10% of the baryonic mass of the Galaxy, it plays
a fundamental role in the Galactic ecosystem, being at the same time the cradle and
the graveyard of stars. Indeed, stars are formed in its molecular clouds, and may die
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spectacularly in supernovae, thus giving back their remains to the ISM as well as kinetic
energy which (partly) drives interstellar turbulence. The chemical composition of the
ISM is dominated by light elements: hydrogen, in its neutral, ionized and molecular
forms, representing ∼ 73% of the mass of the ISM, and helium, representing ∼ 26%.
Heavier elements, called metals, only constitute ∼ 1% of the mass of the ISM, but are
still responsible for complex chemical processes, while remaining valuable tracers of the
properties of the medium. The metallicity of the ISM, i.e. its abundance in metals, gives
clues about the age of the Galaxy, since it is directly related to the number of generations
of stars it has known.

We cannot give a typical temperature or typical density of the gas in the ISM, since
both temperature and density may vary over several orders of magnitude. We usually
distinguish phases in the ISM to account for this variety of conditions of the gas. According
to [75], these include:

• Coronal gas, or hot ionized medium (HIM): gas that has been heated up to T & 105.5 K
by shocks from supernovae,

• Hii gas8: gas that has been photoionized by ultraviolet (UV) photons from hot
stars,

• Warm Hi gas, or warm neutral medium (WNM): in majority atomic gas heated to
T ≈ 103.7 K, and with hydrogen densities nH ≈ 0.6 cm−3,

• Cool Hi gas, or cold neutral medium (CNM): in majority atomic gas with typically
T ≈ 102 K and nH ≈ 30 cm−3,

• Diffuse molecular gas: similar properties to cool Hi gas, but with sufficiently large
densities and column densities so that H2 molecules can form,

• Dense molecular gas: gravitationally bound gas, with nH & 103 cm−3, where star
formation takes place.

We provide in Table I.2 the typical temperatures, densities, and volume filling factors for
these various phases of the ISM.

Galactic magnetic fields (GMFs) are ubiquitous in the ISM (see e.g. [76, 77] and
references therein). Historically, their existence was first suggested by Alfvén, then Fermi,
to explain the acceleration and Galactic confinement of cosmic rays [78], before being
indirectly revealed by the discovery of starlight polarization in 1949 [79, 80]. Since then, we
found out that they are key for the understanding of various other astrophysical processes.
As well as being involved in the observed alignment of dust grains, GMFs make relativistic
electrons spiraling around them, which leads to the synchrotron emission. They are also
strongly coupled to the interstellar gas, and known to influence star formation. In terms
of structure, we usually decompose them as a sum of a large-scale component, which
is coherent over Galactic scales (as for the large-scale GMF lines which seem to follow
Galactic spiral arms), and a much more irregular small-scale component, which is strongly
coupled to the ISM, thus inheriting its turbulent characteristics. Measurements of the
strength of GMFs give typical values of a few µG (see e.g. [81]).

8In spectroscopic notations, Hii refers to the ionized atomic hydrogen, while Hi refers to the neutral
atomic hydrogen.
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Phases T (K) nH (cm−3) fV

HIM & 105.5 0.004 0.5

Hii gas 104 0.2 - 104 0.1

WNM 5000 0.6 0.4

CNM 100 30 0.01

Diffuse molecular gas 50 100 0.001

Dense molecular gas 10 - 50 103 - 106 10−4

Table I.2 – Typical temperatures T , densities nH, and volume filling factors fV of the
various phases of the ISM according to [75].

The ISM appears turbulent on a vast range of scales (see [82] for a review). Turbulence
is characterized by the chaotic motions of a fluid, at scales where its kinetic energy dom-
inates dissipation. A classical picture of turbulence is that of Richardson cascade [83], in
which a turbulent flow is described by eddies of various sizes, with larger eddies tending to
break up into smaller eddies down to the scale where dissipation occurs, called dissipative
scale. Within this picture, the inertial range refers to the range of scales where these
eddies may break up into smaller ones, that is where the kinetic energy cascades down to
the dissipative scale. The Richardson cascade, and the subsequent theory of Kolmogorov
(see [84] for a modern account of Kolmogorov theory), emphasize that turbulent flows
are expected to be self-similar in the inertial range, so that statistics with power-law
scale dependence are common in a turbulent regime (see Appendix A for a definition of
self-similar random fields). Although Kolmogorov theory cannot directly apply to the
magnetized and compressible ISM as it focuses on the (relatively) simpler case of hydro-
dynamical incompressible turbulence, observations of the ISM are found to be self-similar
over a wide range of scales, typically going from 10−1 to 103 pc [82]. The turbulent
ISM also appears intermittent, with localized bursts of dissipation, which significantly
complicates its statistical properties.

I.3.2 Interstellar dust grains

Interstellar dust grains are crucial constituents of the ISM. Their existence has first been
noticed at the beginning of the XXth century looking for explanations for the observed
interstellar extinction in the optical domain [85, 86]. Indeed, dust grains absorb approx-
imately 1/3 of the visible and UV energy radiated by stars, and reemit this energy in
the infrared and submillimeter domains through thermal radiation [87]. They are also
involved in important chemical processes, notably catalyzing the formation of H2 which
is fundamental for the development of dense molecular clouds, and thus for star forma-
tion [88]. Finally, they can heat the gas by releasing energetic electrons pulled off by UV
photons (photoelectric effect), as well as cooling it in dense regions thanks to thermal
radiation in the infrared domain [75].

Dust grains are thought to be composed of various heavy elements, mainly C, O,
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Mg, Si, S, Fe, forming sub-micronic solid particles down to naometric sizes and polycyclic
aromatic hydrocarbon molecules (PAH). Dust models usually distinguish two categories of
grains: amorphous silicate grains, and carbonaceous grains which include PAH molecules
(see e.g. [89]). Their typical sizes range from 0.01 µm to 0.2 µm, with large grains
dominating the mass budget and small grains dominating the total surface area of the
grains. The shape of grains is unknown, but it is clear that some of them must have
nonspherical shapes, usually modeled with ellipsoids or simpler spheroids.

The shape of grains is fundamental to explain the observed polarization properties of
the ISM. The discovery of starlight polarization in 1949 by Hall and Hiltner [79, 80] was
quickly attributed by Davis and Greenstein to the differential extinction of nonspherical
dust grains which must be aligned somehow with the Galactic magnetic field [90, 91]. This
differential extinction also implies a complementary differential thermal emission thanks to
Kirchoff’s law, and thus thermal radiation of dust grains in the infrared and submillimeter
domains must also be polarized, the direction of polarization being orthogonal to that of
starlight [87]. Therefore, observations of the polarization properties of the ISM trace the
alignment of dust grains and the topology of the Galactic magnetic field.

Although many questions remain open, the physical processes explaining the align-
ment of dust grains with the local magnetic field seem quite clear (see [92] for a review).
We observe that large non spherical grains (with a typical size & 0.1 µm) have their short
axis, that is the principal axis with largest moment of inertia, preferentially aligned with
the local magnetic field. Indeed, on one hand, grains have an angular momentum that is
expected to align with the short axis of the grain body so that they can minimize their ro-
tational kinetic energy. This alignment is efficient provided the rotation is suprathermal,
in order to overcome disalignment by collisions. On the other hand, grains are expected
to have a magnetic moment due to their angular momentum (mainly because of the Bar-
nett effect [93]), thus resulting in a precession of the angular momentum around the local
magnetic field. Now, to account for the alignment of the angular momentum of grains
with the local magnetic field, there is still an ongoing debate, but the most plausible
explanation seems to be that of radiative torque (RAT) alignments theory [92]. In this
theory, the RATs exerted onto grains by the absorption and scattering of photons can
both spin-up and align grains with the magnetic field. This is the current paradigm used
to model grain alignment [94].

I.3.3 The dust foreground: sky maps and main statistical properties

This thesis focuses on the statistical modeling of the dust foreground at the frequencies of
observations of the CMB. Figure I.4 shows that, using Planck data, the dust foreground is
the most prominent signal at 353 GHz for both polarization and intensity data. We show
in Fig. I.6 the I, Q, and U GNILC maps at 353 GHz. The resolution of the maps have
been reduced to 80′ from the effective beam full-width at half-maximum (FWHM) of the
instrument at this frequency 5′ to have a good signal to noise ratio over the whole sky.
The sky emission is obviously very inhomogeneous, being intense towards the Galactic
plane, and much fainter at high latitudes. For the search of primordial B-modes, fields
at high latitude, thus much less contaminated by the dust foreground, are prime targets.

From the observed Stokes maps I, Q, and U of the dust emission, one can derive
several useful quantities among the gas column density NH (derived from the dust optical
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Fig. I.6 I, Q, and U GNILC maps of the dust foreground at 353 GHz derived
from Planck data, in Galactic coordinates with the Galactic center in the middle.
The resolution of the maps is uniform and equal to 80′. Figure is taken from [58].
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Fig. I.7 Superposition of total intensity at 353 GHz and drapery patterns show-
ing the orientation of the Galactic magnetic field as inferred from the polarization
angle at 353 GHz rotated by 90◦. Figure is taken from [95].

depth τd
9, see [96]), the polarization fraction p, and the polarization angle ψ. These two

latter quantities are defined as follows:

p =
√
Q2 + U2

I
, (I.30)

ψ = 1
2atan2(U,Q), (I.31)

where atan2(b, a) is the function that returns the angle restricted to (−π, π] between the
positive x-axis and the ray to the point (a, b) in the Euclidean plane. Note that when noise
becomes prominent, these quantities may suffer from a significant bias due to the noise.
Strategies have been developed to tackle this problem, and we refer to [97, 98, 99] for
definitions and comparisons of unbiased estimators for p and ψ. The polarization fraction
p is a measure of the degree of polarization of the dust emission, and the polarization angle
ψ traces the orientation of the projection of the Galactic magnetic field. Indeed, assuming
an effective alignment of interstellar grains with the magnetic field, and approximate
coherence of the direction of the magnetic field along the line of sight, the polarization
angle ψ rotated by 90◦ indicates the direction of the magnetic field projected on the plane
of the sky. We show in Fig. I.7, the sky map of the direction of the projected magnetic
field as inferred from the polarization angle at 353 GHz. This illustrates the structure of
the Galactic magnetic field, notably its correlation with structures in the intensity map.

9The optical depth is the logarithm of the ratio of incident to transmitted radiant power through a
medium.
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Finally, p and ψ obviously relate to Q and U in the following manner:

Q = p× I × cos(2ψ), (I.32)
U = p× I × sin(2ψ). (I.33)

We now give a brief overview of the main properties of the dust thermal emission
foreground extracted from Planck data. These have been guiding the modeling of the
dust emission. We discuss separately spectral and spatial properties of the emission.

One important spectral property is that the dust spectral energy distribution (SED)
is in first approximation well modeled by a MBB with a mean temperature Td ∼ 20 K and
a mean spectral index βd ∼ 1.5 [67, 57]. This was exploited by the Commander algorithm
as seen in Sect. I.2.3 to perform its component separation, and we will discuss the physical
interpretation of such a SED in more details in the next chapter. Note however that this
approximation could not be sufficiently accurate for the search of primordial B-modes,
and a lot of work has been done to go beyond this MBB model (see e.g. [100, 101]).

In terms of spatial properties, dust statistics are very rich, showing, in particular,
complex filamentary patterns arising from the highly nonlinear ISM dynamics. In addition
to being very inhomogeneous, statistics of the dust foreground are highly non-Gaussian10

both in intensity and polarization (see e.g. [102]). This non-Gaussianity is also naturally
expected with nonlinear processes which strongly couple scales.

At 353 GHz, the polarization fraction p does not exceed ∼ 20 %, tending to be
maximal where the gas column density NH is low, corresponding to so-called diffuse
regions. More generally, the maximum polarization fraction tends to decrease when the
gas column density NH increases [96, 58]. It has also been noted that the dispersion
of the polarization angle ψ, measured by the polarization angle dispersion function S is
anti-correlated to the polarization fraction p. These properties seem to be related to the
turbulent structure of the magnetic field [103, 58].

Interestingly, the orientation of the magnetic field probed by the polarization angle
ψ has been found to be correlated to the filamentary structures observed in intensity
data [104, 105] and Hi emission [106]. In the diffuse ISM, we observe that the filaments
are preferentially aligned with the orientation of the magnetic field. Conversely, in dense
molecular complexes, structures tend to be perpendicular to the orientation of the mag-
netic field. Observations of neutral hydrogen structures in the diffuse ISM have also given
another perspective to this observed correlation of the magnetic field with the structures
of the gas, showing a preferential alignment of linear structures with the structures of the
magnetic field probed by starlight polarization and dust polarization [106, 107].

In the context of the search of primordial B-modes, Q and U maps are rather studied in
terms of their E and B transforms (see Sect. I.2.1). Spatial properties of E and B-modes
maps of the dust foreground at 353 GHz away from the Galactic plane have been studied
in [108, 57]. Notably, it has been shown that the power spectra of E and B-modes are well
fitted by power laws. These works have also exhibited a significant correlation between
intensity and E-modes data, called TE correlation, as well as an asymmetry of power
between E and B-modes, the power spectrum of E being approximately twice that of
B. These signatures can be accounted for by the preferential alignment of filaments of

10We will say that data have non-Gaussian statistics if their statistics differ from those of Gaussian
random fields (see Appendix A).
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matter with the orientation of the magnetic field [109, 107]. Finally, in [57], a significant
correlation between intensity and B-modes, called TB correlation, has also been reported.
This was also related to the relative geometry of the magnetic field and the filamentary
ISM in [110].

I.3.4 Simulating the dust emission

Observations of the dust emission need to be confronted to realistic numerical simulations
to improve our understanding of the various processes involved in the ISM. However, as
convenient as simulations may be, as we have depicted it in this section, the physics of
the ISM remains very complex. Important approximations, or simplifications must be
done at some point to simulate the dust emission. Usually, as dust grains are well mixed
with the interstellar gas, simulations of the dust emission go through the resolution of
the magnetohydrodynamical (MHD) equations describing the gas dynamics. The lack of
a satisfying analytical theory of MHD turbulence in the multi-phase ISM demands direct
numerical solving of these equations. This requires heavy computations, which can easily
take days or weeks to run on computer clusters. Although the computation time of such
simulations depends on many factors (target resolution, number of processors, physical
processes involved, etc), to give a more precise order of idea, the MHD simulation I
employed for the purposes of this thesis (which will be introduced in Chapter III) took
almost 8 days while running on 520 processors. This heavy computational cost is one of
the reasons why it is hopeless to solve these equations over the huge range of scales of
interstellar turbulence and for parameters or a choice of physical processes that perfectly
reflects the conditions of the ISM. Nevertheless, keeping these limits in mind, producing
simulated Stokes maps I, Q, and U from a MHD simulation which can be compared to
observations can be roughly divided into three steps:

1. Direct numerical solving of the MHD equations for a specific choice of the physical
processes, parameters, and initial and boundary conditions.

2. Choice of a physical model of dust: nature of grains, abundances, shapes, sizes,
alignment properties, etc.

3. Resolution of the radiative transfer leading to maps of the Stokes parameters (when
this step is not coupled to the first one).

We briefly discuss these steps, and give examples of state-of-the-art strategies for each of
them.

a) Solving MHD equations

The interstellar gas dynamics is usually described with a single fluid. In a simple case
where we assume that the fluid has a perfect conductivity (ideal MHD), and we neglect any
gravitational interaction as well as viscous stresses, the MHD equations take a (relatively)
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simpler form (see e.g. [111]):
∂ρ

∂t
+ ∇ · (ρv) = 0, (I.34)

∂(ρv)
∂t

+ ∇ ·
(
ρv ⊗ v +

(
P + B2

8π

)
I− B ⊗B4π

)
= 0, (I.35)

∂B

∂t
−∇ · (v ⊗B −B ⊗ v) = 0, (I.36)

where ρ, v, B, and P , are the density, velocity, magnetic, and pressure fields, respec-
tively.11 Obviously, we need to make sure that the magnetic field remains a solenoidal
vector field, that is that ∇ ·B = 0, which is a crucial constraint for any numerical solv-
ing. These equations need to be complemented by an energy equation, which is usually
formulated as follows:

∂E

∂t
+ ∇ ·

((
E + P + B2

8π

)
v − 1

4π (v ·B)B
)

= −ρL, (I.37)

where E is the total energy density (kinetic plus thermal plus magnetic), and L is a
net cooling function. This net cooling function measures the exchange of energy per unit
time and unit mass of the gas with its environment due to the various heating and cooling
processes in the ISM. Various solvers exist for these equations, such as RAMSES [112, 113],
or Athena [114].

Obviously, one can add various processes corresponding to additional terms in these
equations. State-of-the-art strategies, such as described in [115], may add for example
gravitational interaction, including self-gravity or an external gravitational potential ac-
counting for the influence of the stellar disk and the dark matter halo. This typically
adds a term in both the momentum equation (I.35) and in the energy equation (I.37),
and requires a Poisson equation connecting the gravitational potential to the density field.
One can also take into account the influence of Galactic differential rotation and of the
corresponding inertial forces when solving the equations in the rotating frame, also adding
complementary terms in the momentum equation [115]. A detailed consideration of dissi-
pative processes (viscous, resistive, ambipolar diffusion) as well as of the various chemical
processes would also significantly complicate these equations (see e.g. [116, 117, 118]).

Turbulence also needs to be driven by an injection of kinetic energy at largest scales.
In the local ISM, this injection of energy is mainly attributed to supernovae. One can
therefore either account for the feedback of supernovae as described in [115], or model
this injection of energy by means of a turbulent stochastic forcing term (see e.g. [119]).

b) Choice of a physical model of dust

The choice of the dust model is also very important. Simplest models will assume uniform
properties of alignment of the grains with the magnetic field, while more convoluted de-
scriptions will introduce several populations of grains (usually carbonaceous and silicates),
with a given distribution of sizes (usually power laws) and shapes (usually spherical or
spheroidal) per population, from which absorption, scattering and polarization properties
are derived (see e.g. [94]).

11Here ⊗ denotes the tensorial product, and I is the identity tensor of order 2. We adopt Gaussian
units for the definition of the electromagnetic field.
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c) Resolution of the radiative transfer

The resolution of the radiative transfer may be a very complex and computationally
demanding step. Various approaches are possible, such as that of POLARIS [120], which
is an example of state-of-the-art three-dimensional Monte-Carlo radiative transfer code.
In this code, the transfer is solved for photon packages drawn randomly. The emission
and absorption properties of the medium are progressively updated along the pathways
of the photons, which may involve several scatterings or absorptions.
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Fig. I.8 Definition of the angles γ and φ related to the orientation of the local
magnetic field with respect to the plane of the sky when the z-axis corresponds
to the line of sight. The line of sight points away from the observer and φ is
counted positively clockwise from the x direction in the HEALPix convention.
Figure is adapted from [103].

Another much more straightforward stategy is to resort to simplifying assumptions
on the properties of the medium. For a given frequency ν and line of sight, the Stokes
parameters Iν , Qν , and Uν can be written (see e.g. [103]) as follows:

Iν =
∫
Sνe

−τν
[
1− p0

(
cos2 γ − 2

3

)]
dτν , (I.38)

Qν =
∫
p0Sνe

−τν cos (2φ) cos2 γdτν , (I.39)

Uν =
∫
p0Sνe

−τν sin (2φ) cos2 γdτν , (I.40)

where Sν is the source function associated to the grains, τν is the optical depth, p0 is an
intrinsic polarization fraction parameter, γ is the angle that the local magnetic field makes
with the plane of the sky, and φ is the angle that the projection of the local magnetic
field on the plane of the sky makes with the x direction when z is the line of sight in
the HEALPix12 [121] convention (see Fig. I.8). With simple prior assumptions for Sν and
τν , one may easily compute these integrals, thus avoiding computationally demanding
methods. This strategy will be employed in Chapter III.

While simulations of the dust emission are essential to gain understanding of the
physics of the ISM, comparing them to actual observations of the ISM is not necessarily

12https://healpix.jpl.nasa.gov

https://healpix.jpl.nasa.gov
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straightforward. For example, when should we say that a simulation reproduces accu-
rately the properties of the observed ISM? Obviously, we cannot count on reproducing
a given observation pixel per pixel, such comparisons often necessitate statistical com-
parisons (see [122] for a recent review of statistical diagnostics employed for studying
interstellar turbulence). The problem of defining a relevant metric to compare simula-
tions and observations is still very open. Most of the time this metric is implicitly defined
by comparing simple statistics, such as power spectra statistics or distributions of pixel
values as we will see in the next chapter. A relevant metric first requires to identify
the salient statistical properties of the dust emission. Some of them have already been
presented in Sect. I.3.3, but it seems that this picture remains incomplete. We will see
that the statistical modeling of the dust emission addresses related problems. In this
thesis, we will delve into what might be the important statistical properties of the dust
emission, emphasizing on the importance of statistics quantifying the couplings between
scales. In the next chapter, we will start by detailing our motivations, before establishing
a state-of-the-art for the modeling of the dust emission.





Chapter II
Modeling the dust emission:
motivations and state-of-the-art

This thesis aims at building a comprehensive statistical model of the thermal emission
of interstellar dust. We discuss the motivations for building such a model, then we give
an overview of the various approaches that have already been employed in the recent
literature. We attempt to classify these models in broad categories. We first differentiate
phenomenological models, that leverage a physical understanding of the properties of the
ISM, from agnostic models, that make no use of this physical understanding. We will
also distinguish deterministic models, designed to retrieve the true emission of the sky,
from statistical models, focusing on its statistical properties. We will see that all of these
existing methods are parametric, with various degrees of interpretability. Finally, we will
situate our approach in this context, which is designed to be non-parametric, statistical,
and in some sense halfway between phenomenological and agnostic approaches.

II.1 Motivations

The motivation for developing a model of the dust emission is twofold. First, for cos-
mology, it is clear that the search for primordial B-modes necessitates a significant im-
provement of component separation methods to better disentangle dust from CMB [2].
Component separation methods might directly (e.g. Commander) or indirectly rely on
models of the dust emission, therefore the better the model, the cleaner the component
separation. Second, from the perspective of Galactic astrophysics, a comprehensive model
of the dust emission would also mark a step forward in our understanding of the ISM.
Such a model would crystallize our knowledge of the properties of the dust emission in a
consistent way, thus defining a valuable reference for analysis, comparison, or prediction
of observations.

A modeling of the dust emission would have to exploit observational data that can be
either mono-frequency or multi-frequency, over the whole sky or just focusing on a limited
field. It would have to take into account the fact that the emission is usually significantly
mixed with other components, may be noisy, or affected by systematics. The resolution
of the observations also depends on the instrument, and on the frequency channel.

We must distinguish two kinds of models with complementary goals, deterministic
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ones and statistical ones. Deterministic models aim at retrieving the exact sky map of
the emission at some observed frequency, free from the potential contamination of other
components, noise, or systematics. This deterministic modeling is obviously essential
to analyze specific regions of the sky in a deterministic way. It can also help for data
cleaning, or calibration. It gives a solid ground for deterministic predictions, such as the
prediction of the emission at an unobserved frequency. On the other hand, statistical
models do not aim at retrieving the exact emission, but rather focus on finding a compre-
hensive and self-consistent characterization of its statistical properties. In other words,
statistical approaches picture the observed sky as a realization of a random field, and aim
at identifying the law of this underlying random field. Note that such statistical models
are common in cosmology. As discussed in Sect. I.1, the CMB is very well modeled by
a Gaussian random field, and its power spectrum allows to constrain the parameters of
the ΛCDM model. A statistical model is usually generative, meaning new realizations
of the sky can be drawn based on this model. This is of strong interest to simulate the
dust foreground, thus giving an alternative to computationally expensive simulations (e.g.
MHD simulations, see Sect. I.3.4). Statistical models can also be predictive. For example,
they may predict the statistical properties of the emission at an unobserved frequency,
allow for data inpainting (that is the replacement of lost or corrupted data), or they may
predict unresolved angular scales based on the statistical properties of larger ones (what
is called super-resolution).

II.1.1 Why a statistical approach?

We can question the relevance of a statistical approach. Indeed, if we had a perfect
deterministic knowledge of the dust emission, at every frequency and angular scales, the
component separation problem would be obviously solved. We would just have to subtract
the known dust emission from the sky emission. Therefore, a deterministic approach would
be a priori more relevant to component separation problems. However, the fact is we will
never be able to perfectly measure the dust emission, either because the sky emission is
always a mixture of components at some point, or just because our instruments are not
perfect, and they will always introduce systematics or a certain amount of noise which will
naturally introduce randomness in the measurements. Ignoring this randomness would be
missing some potentially valuable information. For instance, this can go from elementary
estimations of measurements uncertainties, to correlations in the data that could improve
the accuracy of the measurements when fitting a model to the data.

We also stress the importance of statistical simulations for the validation of data analy-
sis pipelines. In particular, for CMB experiments, this was and is still now one of the main
applications of the Planck sky model [123] (PSM) and Python sky model [124] (PySM).
Such simulations are essential to assess the capabilities of upcoming CMB experiments
and their component separation methods in finding primordial B-modes.

From a physics point of view, interstellar turbulence gives us no choice but to adopt
a statistical approach. Indeed, turbulent motions are described statistically, and even if
time scales of interstellar motions are way too large for us to observe the time evolution
of the ISM, an ergodic assumption is usually relevant to a certain extent for estimating
statistics that characterize this turbulence. Also, for CMB observations the target of
cosmologists is the statistical information contained in the CMB, meaning its angular
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power spectrum, or potential signs of non-Gaussianity [59]. In this cosmological context,
the estimation of the power spectrum (or complementary non-Gaussian statistics) of the
CMB demand statistical models for the foregrounds.

Nevertheless, we will see that the distinction between deterministic and statistical
approaches becomes blurry at some point. A relevant statistical model of the dust emission
will necessarily need to incorporate a form of determinism, if only to describe the largest
angular scales on the sky from which it is pointless to make a statistical model because
of cosmic variance.

II.1.2 What is a good model?

The definition of a "good" statistical model is very arbitrary and depends on the appli-
cations. For B-mode detection, a good model is typically a model allowing to estimate
relevant uncertainties or bias of a component separation method. Or, when the model is
directly included in the component separation method (e.g. as for Commander), a good
model will be a model allowing a sufficiently accurate removal of the dust foreground to
hopefully claim a detection. For Galactic astrophysics, a good model is roughly a model
that tells us something about the physics of the ISM. Either way, we try here to draw
common characteristics that will guide the approach of this thesis.

A good statistical model needs to be comprehensive, meaning that it should capture
most of the salient statistical properties of the observational data. This is of the utmost
importance for the simulation of the dust emission. To give an example, for B-mode
detection, a statistical model of the spatial properties of the polarization signal will be
all the more convincing if it correctly reproduces the observed power spectra, the TE
correlation, and the E-B asymmetry (see Sect. I.3.3). In any case, the comprehensiveness
of a model will be defined relatively to a choice of summary statistics (on this example
power spectra measurements), usually inspired by the literature. Until recently, the main
target of the statistical models of the dust emission has been to reproduce the observa-
tional power spectra of the emission, making use of homogeneous Gaussian random fields
(GRFs). Homogeneous GRFs are entirely characterized by their mean and their power
spectrum (see Appendix A), for this reason they are very natural choices for this kind of
modeling. However, we know that the dust emission has highly non-Gaussian statistics,
due to the nonlinearity of interstellar physics, meaning that a characterization in terms of
power spectrum (and mean) only is not satisfactory. A comprehensive model thus needs
to go beyond Gaussian models, or in other terms, in order to assess the comprehensive-
ness of our model, our choice of summary statistics will need to include a wider class of
statistics than mere power spectra measurements. From a more physical point of view,
this non-Gaussianity relates to the couplings of physical fields across scales, therefore
a comprehensive model will need to capture and reproduce these interactions between
scales.

To improve our understanding of the properties of the ISM, a good statistical model
should be physically interpretable. Ideally, its definition should be guided by physics. This
way, reproducing the statistical properties of observations from a physically motivated
model would already be satisfactory. Moreover, the parameters of such models (when they
exist) have often a straightforward physical interpretation, which facilitates a physical
reasoning and a characterization of observational data. The drawback of this approach
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is that we project the data into a pre-conceived framework, which might preclude our
ability to extend our knowledge. Let us also emphasize that interpretability usually goes
hand in hand with simplicity, and a too intricate model, for example a model involving
a large number of parameters, will necessarily be less interpretable than a model with a
few parameters only.

Finally, let us mention that in the prospect of simulating the dust emission, ideally, it
should be computationally efficient to generate statistical realizations from the model.

II.1.3 Standard statistics

We review here standard statistics that are usually employed to study the statistical
properties of the ISM, or that are often picked as summary statistics to assess the com-
prehensiveness of a statistical model. Since our confidence in a model usually depends on
its ability to reproduce a given set of summary statistics, our model should include most
of the information captured by these statistics. However let us keep in mind that this is
not necessarily the only criterion that determines the quality of the model as discussed
in the previous subsection.

Let us consider a random field X, from which the observed data x is a realization. We
assume that X is defined over a two-dimensional domain, each dimension corresponding
to a spatial dimension. This domain can be a sphere in the case of sky observations, or
a rectangular domain when making a flat-sky approximation with observational data, or
using simulated data that is naturally defined on a plane. We will also assume X to be
homogenenous so that statistics are invariant under global translations. This assumption
is open to serious criticism as it is obvious that the sky emission of interstellar dust is not
statistically homogeneous. However, we will assume that at least locally, this assumption
makes sense. To simplify, we finally assume X to be a real-valued random field, although
we will deal with both real and complex-valued random fields in this thesis.

A natural way to study a random field is to estimate its so-called n-point statistics
(see Appendix A for additional details). These include nth-order probability distribution
functions (PDFs) and nth-order moments. In practice, the estimation of nth-order PDFs
for n ≥ 2 will be numerically intractable, and we will refer more directly to the first-
order PDF of a random field X as the PDF of X, or simply p(X). The PDF of X does
not depend on the position r since we assumed X to be statistically homogeneous. On
the other hand, nth-order moments, which are projections of the nth-order PDFs, will be
relatively simpler to estimate provided we keep n relatively small. There are several ways
to define these statistics, here we choose definitions that coincide with n-point correlation
functions. Therefore the nth-order moment of X, called Cn(r1, . . . , rn), is defined as:

Cn(r1, . . . , rn) = E [X (r1) . . . X (rn)] . (II.1)

Statistical homogeneity helps to get rid of one variable, so that Cn can be easily identified
to C̃n defined as:

C̃n(τ1, . . . , τn−1) = Cn(r, r + τ1, . . . , r + τn−1), (II.2)

for any r. The first-order moment corresponds to the mean of X, called µX , while the
second-order moment corresponds to the autocorrelation function of X, called RX(τ ).
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Second-order and third-order moments are often studied from a spectral perspective,
that is with the power spectrum P (k) and the bispectrum B(k1,k2), respectively. These
are defined as:

P (k) = F [C̃2](k), (II.3)
B(k1,k2) = F [C̃3](k1,k2), (II.4)

where F denotes both the bidimensional and quadridimensional Fourier transform, respec-
tively (see Appendix B). When X is defined on a discrete grid of sizeM×N and assuming
periodic boundary conditions, we can show that the power spectrum and the bispectrum
relate to moments derived from the Fourier transform of X, denoted X̂(k) = F [X](k),
as follows:

P (k) = 1
MN

E
[
|X̂(k)|2

]
, (II.5)

B(k1,k2) = 1
MN

E
[
X̂(k1)X̂(k2)X̂(k1 + k2)∗

]
. (II.6)

We refer to Appendix A for additional mathematical details on the power spectrum and
bispectrum. For the ISM, the power spectrum is one of the most immediate statistics that
can be derived for any statistical analysis (see e.g. [125]). On the contrary, the bispectrum,
while being more difficult to represent and interpret, also suffers from a higher statistical
variance compared to the power spectrum, which thus requires larger data sets for accurate
estimates. Beyond these limitations, the bispectrum is a useful statistics to probe non-
Gaussianity in the data. It naturally quantifies interactions between two given scales.
Bispectra analyses were first introduced in the ISM community in [126] to study non-
Gaussianity in MHD simulations of interstellar turbulence. Further analyses in [127] have
shown the interest of the non-angular averaged three-point correlation function to better
discriminate different regimes of interstellar turbulence (see Fig. II.1 for an illustration).

Standard statistics for the analysis of the ISM also include the PDFs of the in-
crements of X. The increments of X for a given lag l are the fields δXl defined by
δXl(r) = X(r + l)− (r). The PDFs of the increments for a lag l are simply the distri-
butions of the field differences between values at points separated by the lag l. For the
ISM, these are for instance computed on velocity maps for their tails that characterize
the intermittent dissipation of interstellar turbulence [128, 129].

We also mention Minkowski functionals which are common statistics to characterize
the morphological aspects of smooth random fields. In cosmology, these have been used
in various contexts, as the investigation of potential non-Gausianity and anisotropy in
the CMB (see e.g. [130, 33]), the characterization of the large-scale structure (e.g. [131])
or that of weak lensing data (e.g. [132]). In the ISM community, these are however
much less popular statistics, although it has already been applied in the context of dust
modeling [73, 133]. In two dimensions, there are three Minkowski functionals V0, V1, and
V2, which are defined as follows. Choosing a given threshold α, we define for a particular
realization x of X, the excursion set Γα = {r | x(r) ≥ α × σ}, where σ is the standard
deviation of X. This set simply corresponds to the region where the field is greater than
a given threshold expressed in units of the standard deviation of the field. The Minkowski
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Fig. II.1 Example of representation of a three-point correlation function
C̃3(r1, r2) as computed for a MHD simulation in [127] (signal-to-noise coeffi-
cients). Statistical isotropy is assumed, and the three-point correlation function
C̃3(r1, r2) is expanded on Legendre polynomials Pl, thus defining ζl(r1, r2) coef-
ficients. Figure is taken from [127].
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Fig. II.2 Visual interpretation of Minkowski functionals on simulated intensity
data. The right panel shows the restriction of an example map, shown in left, to
the excursion set Γα for α = 1.5. The contours of the excursion set are shown
in blue. Here, V0(α), V1(α), and V2(α) are proportional to the uncovered area,
length of the contours, integrated curvature along the contours, respectively. The
example map is a dust emission map computed from a MHD simulation that will
be introduced in Chapter III.
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functionals associated with x are computed as:

V0(α) = 1
A

∫
Γα

da, (II.7)

V1(α) = 1
4A

∫
∂Γα

dl, (II.8)

V2(α) = 1
2πA

∫
∂Γα

κdl, (II.9)

where A is the total area of the field, ∂Γα is the boundary of Γα, da and dl are the
surface and line elements associated with Γα and ∂Γα, respectively, and κ is the curvature
of ∂Γα (see e.g. [132] for more "operational" definitions). The functionals V0, V1 and
V2 are called the area, perimeter, and genus (i.e. number of "holes") characteristics,
respectively (see Fig. II.2 for an illustration). For GRFs, or mildly non-Gaussian random
fields, analytical expressions of these statistics have been derived, thus giving a way to
quantify morphological non-Gaussianity [132].

Let us finally briefly cite statistics derived from topological data analysis. Topological
properties of the data, i.e. properties that remain invariant under continuous deforma-
tions, can add a complementary insight to the previous statistics. In [134], the authors
make use of Betti numbers and persistence diagrams to compare simulations and observa-
tions of the turbulent ISM. For cosmology, [135] discusses the interest of such topological
statistics for characterizing cosmological GRFs. One spectacular application is the sys-
tematic identification and characterization of the skeleton of the cosmic web [136, 137].
We will not make use of these statistics in this thesis, however they are mentioned here
mainly to recall that there is an important variety of approaches to describe the prop-
erties of images. This variety of approaches shows that the assessment of the quality
of a statistical model will therefore be very dependent on the choice of statistics we use
as a reference. We emphasize that this choice must be done in light of the subsequent
applications of the model.

II.2 Phenomenological models

Physics of the ISM and its interstellar grains is rich and complex, involving a myriad
of phenomena, which are nonlinear and coupled to each other. Added to that, the ISM
exchanges matter and energy with stars and the extragalactic medium, which makes
it a fundamentally open system. Taking into account all this complexity to build a
comprehensive model of the dust emission valid at any frequency or resolution would
be illusory. We have seen in the first chapter that even MHD simulations of the ISM
cannot reasonably tackle the full complexity of the medium. Similarly, models of the
dust emission will require important approximations. Most of these models will resort to
phenomenological models to approximate this complexity, as far as possible. We discuss
such phenomenological models here, distinguishing those that are directly fitted to data
in a deterministic way, defining deterministic models, from those introducing a form of
randomness, defining statistical models.
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Fig. II.3 Frequency dependence of a MBB emission for a few typical values of
β and T . The grey bands show the 353, 545, and 857 GHz bandpasses of the
Planck satellite as well as the 100 µm bandpass of IRAS.

II.2.1 Deterministic approaches

Deterministic models often rely on a model of the spectral dependence of the emission
for each pixel of the sky. They typically involve a template, which corresponds to the
map of the sky emission at a given frequency, as well as sky maps of the parameters
of the spectral model. The template and the parameters are determined by fitting the
observational data. The fitted parameters give insight into the properties of the dust
foreground, and they allow to predict what would be the observed sky at unobserved
frequencies (provided these remain in the frequency range of the spectral model).

a) Modified blackbody radiation-based models

The most important class of spectral models that are fitted to observational data derive
from the modified blackbody radiation (MBB) model from the far-infrared domain to the
millimeter domain. Over this range of frequencies, the Galactic emission is dominated
by the thermal radiation of large grains. In the optically thin limit, the intensity Iν at a
frequency ν reads:

Iν = τνBν(T ), (II.10)

where τν is the dust optical depth, and Bν(T ) is the Planck function describing a black-
body radiation at temperature T . The optical depth τν can be written as τν = κνMdust,
where κν is the dust emission cross section per unit of mass, andMdust is the dust mass sur-
face density [138]. This parameter κν is usually modeled as a power law κν = κ0(ν/ν0)β,
introducing the spectral index β and κ0 the dust emission cross section per unit dust mass
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at a reference frequency ν0. This modeling leads to the MBB emission:

Iν = κ0

(
ν

ν0

)β
MdustBν(T ). (II.11)

We show in Fig. II.3 a plot of the frequency dependence of Iν choosing a few typical
values for the dust emission for β and T . We clearly see from this plot that the maximum
of the emission is typically at a few THz, and that towards the microwave domain and
beyond the high-frequency limit of the far-infrared domain, the emission appears negligible
in comparison (although, in the microwave domain, dust emission remains a significant
foreground to the CMB down to ∼70 GHz, see Sect. I.2.3). This simple model of the
spectral dependence of the dust emission has been the cornerstone of various approaches.

In [138], the authors fitted this MBB model for each pixel of the intensity sky using
Planck data at 353, 545, and 857 GHz and IRAS 100 µm data. They have found that
this model reproduces well the data, and they have extracted T and β sky maps which
characterize the spectral energy distribution (SED) of the dust foreground. These are
shown in Fig. II.4 added to the corresponding map of the optical depth at 353 GHz
τ353. Notably, the means and standard deviations on the whole sky for T and β are
(19.7± 1.4) K and 1.62 ± 0.10, respectively. The Commander algorithm [61, 29] has
performed a component separation also relying on a MBB modeling of the dust foreground
using Planck and WMAP data, for both intensity and polarization data. For intensity, the
correlation of dust model maps with the distribution of galaxies emphasizes contamination
by the CIB [139]. The GNILC component separation method was designed to mitigate
the CIB contamination [67]. GNILC has thus derived more accurate maps of the intensity
dust foreground, and extracted improved estimates of the spectral parameters T and β.
On the whole sky, updated means and standard deviations of these parameters have been
found to be T = (19.4± 1.3) K and β = 1.6± 0.1.

Two-component MBB models have also been used to describe the dust emission (see
[140]). In [141], the authors have shown that modeling the dust emission in intensity with
the sum of two MBB emissions rather than using a single MBB component better fits
observational data on a 100-3000 GHz frequency range. The physical interpretation of
this result is unclear, but might be interpreted as the sign of the existence of two distinct
dust grain species. Note, however, that we expect a non-uniform temperature of grains
along the line of sight, whose distribution would obviously be better captured by a model
with more parameters.

The dust polarization SED measured by Planck for the diffuse ISM is also well fitted
by a MBB from 353 to 45 GHz [57]. However, departures from the MBB model and its
simple extensions have been anticipated at microwave frequencies, although they were
not detected at the Planck sensitivity (see e.g. [100]). This could be an additional
complication for components separation methods in the context of primordial B-mode
detection. Strategies are currently in development to improve these parametric models
of the spectral dependence of the dust emission on sky maps [142] and in the analysis of
dust power spectra [101].

b) Physical models of dust

Another approach for the modeling of the dust SED is to make use of a physical model of
interstellar dust instead of a phenomenological law of dust emission. In [143], the authors
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Fig. II.4 All-sky maps of the optical depth at 353 GHz τ353, temperature T ,
and spectral index β as derived from a MBB fit of Planck 353, 545, and 857 GHz
and IRAS 100 µm data. Figure is taken from [138].
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made use of the dust model introduced in [144] to describe the emission observed in in-
tensity by Planck, IRAS, and WISE infrared observations. This approach is based on the
modeling of the dust grains as a mixture of amorphous silicate grains and carbonaceous
grains that are heated by a distribution of starlight intensities. This model introduces
parameters that characterize the emission, including the dust mass surface density and
the intensity of the starlight radiation that is heating grains. This kind of approach, while
depending on a fair amount of assumptions and parameters, gives a valuable complemen-
tary insight to constrain the properties of interstellar grains. Finally, let us note that, in
return, these approaches allow to better constrain the existing physical models of dust
(see e.g. [145]).

II.2.2 Statistical approaches
An important family of phenomenological statistical models has been motivated by the
search for primordial B-modes. These models have been mainly focusing on the modeling
of the Galactic magnetic field (GMF), whose structure is fundamental to explain the
statistical properties of Q and U maps. We review the main strategies that have been
introduced to tackle this problem.

In Sect. I.3.4, we introduced the expressions of the Stokes parameters I, Q, and U
describing the polarized thermal emission of interstellar dust (see Eqs. (I.38)-(I.40)). The
construction of simulated maps deriving from a model usually relies on these formulae.
A few assumptions are often made to simplify these integrals. First, the source function
of the dust may be assumed to be that of a blackbody radiation, that is Sν = Bν(Td),
where Td is the dust temperature. Second, the polarization fraction parameter p0, which
is related to cross section parameters of the grains, and the degree of alignment of the
grains with the magnetic field (see [103] for more details), may be assumed uniform (see
[94] for a discussion). A typical value for p0 is that used in [103], i.e. p0 = 0.2. Third,
the dust infinitesimal optical depth is written dτν = σνnHdz, where σν is the dust cross
section per H at frequency ν, assumed to be uniform, nH is the hydrogen density, and
z is the coordinate along the line of sight. Finally, we often assume the medium to be
optically thin to the radiation, meaning that τν � 1, which gives e−τν ≈ 1. Note that this
assumption is always valid in the diffuse ISM. Within these assumptions, Eqs. (I.38)-(I.40)
read:

Iν = Sνσν

[
NH − p0

∫
nH

(
cos2 γ − 2

3

)
dz
]
, (II.12)

Qν = p0σνSν

∫
nH cos (2φ) cos2 γdz, (II.13)

Uν = p0σνSν

∫
nH sin (2φ) cos2 γdz, (II.14)

where we have introduced the hydrogen column density NH =
∫
nHdz. From these formu-

lae, Stokes parameters I, Q, and U appear to be proportional to an integration along the
line of sight of quantities depending on the same three variables: the hydrogen density nH,
and the angles γ and φ which describe the orientation of the GMF (see Fig. I.8). The
statistical modeling of the polarized emission of interstellar dust reduces to choosing a
model for the hydrogen density field and the GMF orientation.
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Fig. II.5 Schematic view of the GMF as modeled in [146], showing N = 3 layers.
The observer is at the center. Figure is adapted from [147].

A series of papers [146, 148, 149, 150] has focused on the modeling of the GMF in
the solar neighborhood using Planck data at 353 GHz at intermediate and high Galactic
latitudes, aiming in particular at reproducing the statistical properties of the polarization
fraction p and the polarization angle ψ. These models basically consist in describing the
GMF as a piecewise constant field in a space divided into N concentric spherical shells,
the observer being at the center. This leads to the following simplified expressions for the
Stokes parameters:

Iν = Sνσν

N∑
i=1

NH,i

[
1− p0

(
cos2 γi −

2
3

)]
, (II.15)

Qν = p0σνSν

N∑
i=1

NH,i cos(2φi) cos2 γi, (II.16)

Uν = p0σνSν

N∑
i=1

NH,i sin(2φi) cos2 γi, (II.17)

where NH,i, γi, and φi are the column density, and angles describing the orientation of the
magnetic field in the shell i, respectively. The angles γi and φi are drawn from a random
modeling of the magnetic fieldBi. The magnetic fieldBi is decomposed asBi = B0+Bt,i,
where B0 is a mean component, which is assumed to be constant and independent from
the shell i, and a turbulent component Bt,i, which is a homogeneous GRF with a power-
law power spectrum (the exponent of the power-law is an explicit parameter of the model).
The turbulent components are assumed to be independent across the shells. We show in
Fig. II.5 a representation of the model of the GMF with three layers. This decomposition
of the structure of the magnetic field has been employed in [146] making use of seven
layers to fit polarization data of the southern Galactic cap1. This approach has been
extended in [148] to build a model that also fits the observed power spectra and cross-

1Note that, in this model, the number of layers is not a very well constrained parameter, although it
has been shown that it must be kept reasonably small to correctly reproduce the PDF of the polarization
fraction.
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spectra of the dust emission at 353 GHz. This notably incorporates in the model a TE
correlation, and an asymmetry of power between E and B-modes. A similar model has
been employed in [149] and [150] to constrain the statistical properties of the emission at
both southern and northern Galactic caps combining Planck and Hi data. These models
comprise three layers that represent the cold and warm neutral phases of the ISM, and
thermally unstable gas at intermediate temperatures. The hydrogen column density in
each of these three layers is derived from a Gaussian decomposition of Hi spectroscopic
data (the GASS and EBHIS surveys). Note that Hi observations also allow to constrain
the 3D structure of the GMF building on its alignment with the filamentary structure of
the atomic ISM [151, 152]. In line with the statistical approaches discussed here, in [152],
the authors built from Hi4PI data 3D (position-position-velocity) Stokes parameter maps
Q and U based on the estimation of local orientation of the Hi emission as a function
of the velocity dimension of the observations. While purely deterministic, this approach
could hopefully help to improve the statistical models of the magnetic field discussed in
this paragraph.

Another strategy to model the polarized emission of interstellar dust has been im-
plemented in [153]. This approach defines statistical models for both nH and B vari-
ables. Contrary to the previous strategy where the turbulent magnetic field was drawn
on spheres, here the models are true 3D models (within the flat-sky approximation). The
statistical models are derived from 3D fractional Brownian motions (fBm), which are
examples of self-similar GRFs (see Appendix A for a definition). The gas density nH is
modeled as the exponential of a 3D fBm, while the magnetic field B is defined as the
rotational of a vector potential whose components are independent 3D fBms. The Hurst
exponents associated with these 4 fBms are parameters of the model. This model was
applied to the characterization of the Polaris Flare molecular cloud by means of a Markov
chain Monte Carlo fitting of its parameters.

Finally, we must recall that the strategy most directly motivated by ISM physics
to define a statistical model of the polarized emission of dust remains that relying on
MHD simulations (see e.g. [154, 155, 94]).2 However, the computational cost of a MHD
simulation is usually incomparable with that needed to generate simulated Stokes maps
according to the previous strategies. In consequence, one will not be able to fit the
parameters of a statistical model based on MHD simulations with the same flexibility as
with the above strategies. For this reason, these MHD-based models cannot be put on
the same level as phenomenological models. This underlines the need to find a reasonable
trade-off between the computational cost needed to generate realizations of the model,
and the degree of refinement of the model.

II.3 Agnostic models

Since 2019, a new class of models of the dust foreground has emerged, taking an opposite
direction to phenomenological models. These models are built making no use of the
physical nature of the data, and because they are applied to dust data in the same way as
they would be applied to images of cats and dogs, we call these models agnostic. These

2Strictly speaking, models based on MHD simulations are not phenomenological models as they derive
directly from fundamental MHD equations.
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Fig. II.6 Architecture of LeNet-5, which is a deep neural network designed
for the classification of images of handwritten digits. The CNN part of the
network is made of a succession of convolutional layers (convolutions + pointwise
nonlinearities) and pooling layers. The second part of the network is the actual
classifier and is made of fully connected layers. Figure is taken from [156].

are derived from recent advances in machine learning, and particularly from an emerging
subfield named deep generative modeling. Deep generative modeling relies on neural
networks architectures to approximate probability distributions in a high-dimensional
space. These models are thus statistical parametric models, the parameters being the
weights of the network. Contrary to phenomenological models, the interpretability of the
parameters of such models remains very remote. After a very short introduction on the
structure of convolutional neural networks (CNNs) which are at the core of these agnostic
models, we discuss the various deep generative models that have been used in the dust
foreground modeling context.

II.3.1 Convolutional neural networks
CNNs are deep neural networks3 that were originally inspired by the workings of the visual
cortex [157]. Since their popularization in the 1990s by Le Cun [158], CNNs have brought
spectacular applications to various domains among image recognition, video analysis,
natural language processing, drug discovery, or financial time series analysis. We briefly
introduce these networks here, and refer the reader to general textbooks for a detailed
presentation (e.g. [159]).

The specificity of CNNs is their ability to build a representation of some input data
that is essentially based on successive convolutions by filters (also called kernels), pointwise
nonlinearities, and downsampling operations. The filters are parameters of a CNN and
these are learned during a training step. More precisely, in the context of image analysis
which is our concern here, with x : J0,M − 1K× J0, N − 1K→ R an image of size M ×N ,
the convolution of x with a filter ψ : J0,K − 1K2 → R of size K ×K, denoted x ? ψ and
called a feature map, reads:

x ? ψ(r1, r2) =
K−1∑
k1=0

K−1∑
k2=0

x(r1 − k1, r2 − k2)ψ(k1, k2). (II.18)

3The adjective "deep" refers to the use of multiple layers in these networks.
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Finite dimensions of the image x also demand to choose a padding method to deal with
pixels at the boundaries of x (zero-padding, periodic boundary conditions, etc). After
a convolution, pointwise nonlinearities, which are defined by an activation function ρ,
are usually applied to the resulting feature maps. This activation function is typically a
rectified linear unit (ReLU), which simply refers to the function u→ max(0, u). Finally,
downsampling operations, defining pooling layers, are used to progressively lower the di-
mension of the images and increase the invariance of the network to small translations.
These can also help the network to learn an invariance to other kinds of transformations
such as rotations. Common downsampling functions are the max pooling function, cor-
responding to a downsampling of an image made by only keeping the maximum value of
pixels in local neighborhoods, and the average pooling function, keeping local averages of
pixels.

These operations are building blocks of the network. They are organized in sequential
functional layers, and the output of the network may be connected to other networks
depending on the application. Typically, for a classification problem, which is a very
common problem of supervised learning, the purpose of the CNN is to extract relevant
features from data before the actual classification. To give a more concrete example, let
us sketch the typical architecture of a CNN that is designed for an image classification
problem, such as the classification of handwritten digits which made the CNNs famous
in the 1990s (see e.g. LeNet [156] architecture shown in Fig. II.6). Such a network takes
as an input an image x, and the first layer would typically correspond to a convolutional
layer, computing a set of feature maps x(1)

i = x ? ψ
(1)
i , with {ψ(1)

i }i a corresponding set
of filters. After the application of an activation function ρ, the second layer would be a
pooling layer, which would extract downsampled maps x(2)

i from each of the ρ(x(1)
i ) maps.

A third layer would be another convolutional layer computing an additional set of feature
maps {x(3)

i }. It would be connected to all, or part, of the maps of the previous layer, such
that each map x(3)

i would be defined as:

x
(3)
i =

∑
j

x
(2)
j ? ψ

(3)
i,j , (II.19)

with {ψ(3)
i,j }j the set of filters related to x(3)

i . Additional layers could be stacked similarly.
Finally, the output of this network might be connected to an actual classifier, usually
made of fully connected layers (i.e. layers made of neurons that are connected to all the
neurons of the previous layer).

In these networks, filters are optimized through a training process. This consists in a
minimization of a given loss function, which is made possible thanks to the combination
of the backpropagation algorithm and an optimizer (see e.g. [159]). For a classification
problem, the loss is typically a mean-square error measuring the error of classification of
the network on already-classified data.

The success of CNNs originally comes from their application to supervised learning
problems, e.g. classification problems or regression problems. However, for a few years
new architectures of CNNs have been designed to tackle more intricate problems of unsu-
pervised learning. Prime examples are density estimation problems for high-dimensional
data, which is the concern of deep generative modeling.
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Fig. II.7 Illustration of a GAN. The generative network is trained to fool the
discriminative network, while the latter is trained to classify mock and training
data. Credits: Thalles Silva.

II.3.2 Deep generative modeling and the dust foreground

The most prominent generative neural network architectures are generative adversarial
networks (GANs) [160], and variational autoencoders (VAEs) [161]. These architectures
have been recently applied to model the dust foreground in a series of works [73, 133, 162].
We review here some of their main results.

A GAN is a combination of two networks: a generative network (G) and a discrimina-
tive network (D). These are trained as if they were two opponents in a game. The goal of
D is to estimate the probability for its input to be part of the training set or to be mock
data generated by G, while the goal of G is to generate mock data that would fool D with
the highest probability (see Fig. II.7 for an illustration). Once the network is trained,
G thus defines a generative statistical model of the data. In [73], the authors trained
a modified DCGAN (deep convolutional GAN) [163] using approximately a thousand of
20◦ × 20◦ patches extracted from the GNILC 353 GHz dust intensity map. Then, they
assessed the quality of the mock maps by comparing them to the real maps using the
following summary statistics: PDFs of the pixel values, empirical power spectra and their
uncertainties, and Minkowski functionals and their uncertainties. The mock maps seem
realistic by eye (see Fig. II.8), and show globally good quantitative agreements with the
original maps, although significant discrepancies remain (for the tails of the PDFs, and
Minkowski functionals notably). In [133], the authors also trained a modified DCGAN
using the same intensity data but here focusing on the generation of the smallest scales
of the data given their largest scales. They have shown good agreement of the Minkowski
functionals, and power spectra of their mock small scales maps with that of the real ones.
Then, they applied the same strategy to polarization Q and U maps separately. However,
GNILC polarization maps are much less resolved than intensity maps due to the globally
lower SNR of polarization measurements. Thus they assumed the smallest scales of in-
tensity maps to be representative of that of Q and U maps and used them to train their
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Fig. II.8 Selection of 20◦×20◦ patches from the GNILC 353 GHz intensity map
(top row), and mock maps generated by the GAN introduced in [73] (bottom
row). Figure is taken from [73].

network in a similar way. This assumption allowed them to generate a sky map of the
polarization signal with mock small scales.

A VAE aims at compressing some input data into a multivariate distribution defined
by latent variables (encoder part), and from which the input data can be reconstructed
(decoder). In [162], the authors built a convolutional VAE and trained it using 8◦ × 8◦
patches of the GNILC 545 GHz intensity map. They used the power spectrum and the
PDF of pixel values as summary statistics to assess the quality of their model. They have
shown a good agreement of the PDF of pixel values and of the power spectrum at large
scales between reconstructed maps and their corresponding original maps (picked from
the test set). However an important flaw is that the reconstructed maps have a blurry
aspect, which is quantitatively associated with a lack of power at small scales compared
to the original data (see Fig. II.9). The authors attributed this flaw to a recurrent issue
of these VAE models.

II.4 The best of both worlds?

The dust foreground has two "dimensions": a spectral one, and a spatial one. The spectral
dimension is at the core of phenomenological deterministic modeling. It is exploited to
fit the parameters of MBB-based models, or more physical models of interstellar dust,
to multi-frequency observations, thus providing maps of the dust foreground and of its
parameters. This kind of model gives a direct valuable insight into the properties of
the ISM. However, they do not leverage the spatial structure of the data yet which has
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Fig. II.9 Top panel: Test intensity map x (left) next to its reconstruction x̃ with
a VAE (right). The test map is a 8◦× 8◦ patch of the GNILC 545 GHz intensity
map. Bottom panel: Distribution of pixel values (left), and log power spectra
(right) of the original image and its reconstruction. Figure is taken from [162].

been shown to exhibit important distinctive properties. On the contrary, so far statistical
models have focused on the characterization of this spatial structure, with either phe-
nomenological models or agnostic models to capture and simulate the spatial statistical
properties of the dust emission. Some phenomenological statistical models make use of
GRFs with power-law power spectra, the turbulent component of the magnetic field be-
ing a GRF as in [148, 153], the density field being the exponential of a GRF as in [153].
However this approach implicitly ignores the interactions between scales that are inher-
ent to nonlinear physics. Interstellar turbulence, which is thought to be responsible in
great part of the structure of the emission, is fundamentally nonlinear, and capturing the
interactions between scales is crucial if one wants to fully characterize its properties. On
a side note, let us mention that non-Gaussian alternatives to GRFs exist to describe the
physical fields of the ISM. For example, in [164, 165], the authors have introduced statisti-
cal models to characterize 3D MHD turbulence using multiplicative chaos. This approach
gives a practical way to parametrize the intermittency of the random fields, which is an
important non-Gaussian property of the ISM. MHD simulations can also bridge this gap,
however their computational cost, and their lack of flexibility are their main drawbacks.
For example, merely reproducing Planck power spectra statistics remains a significant
challenge for MHD simulations [154, 155]. Agnostic models, and the CNNs on which
they rely, directly tackle the problem of capturing interactions between scales. A CNN
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is designed to identify connections between feature maps that are themselves optimized
to represent the data in some sense. This is a promising avenue for dust modeling, al-
though the definition of the training set is a difficulty that may restrict the relevance of
the model. Though training typically requires a training set that is as large as possible,
from a physical point of view we want to restrict the training set to data that is most
representative of the target field being modeled. We also point out that the filters, which
are learned during the training of the network, remain much less interpretable than the
parameters of phenomenological models.

In the following chapters, we will explore a new avenue to model the dust foreground,
attempting to be halfway between agnostic models and phenomenological models. We
will focus on the statistical modeling of the spatial properties of the polarization signal of
the dust foreground, with particular care for the characterization of interactions between
scales, which are fundamental for highly nonlinear physics. Note that, as a first step, we
will ignore the spectral dimension of the data. We will take advantage of recent advances
in data science aiming at understanding the mathematical properties of CNNs, and the
origin of their success to build relevant representations of data [166]. We will define
models based on non-parametric representations of the data that are directly inspired
from the structure of CNNs, namely the wavelet scattering transform (WST) [3, 4] and
the wavelet phase harmonics (WPH) [5, 6]. Note that we will conveniently refer to these
two representations as scattering-like representations. These take the form of statistics
allowing to characterize non-Gaussianity by means of a characterization of interactions
between scales. Contrary to deep generative modeling approaches, generative models
based on these statistics do not involve any training step (see Chapter IV). Moreover,
we will see that they allow for interpretability, which permits to relate the model to the
physics of the ISM to a certain extent (see Chapter III). Finally, we will see that, while
they may be impacted by noise, this will not prevent us to propose solutions to build
satisfying models from noisy observational data (see Chapter V).





Chapter III

Statistical characterization with the
wavelet scattering transform

The statistical characterization of the diffuse magnetized ISM poses a major challenge.
To account for its non-Gaussian statistics, we need a data analysis approach capable of
efficiently quantifying couplings across scales. This information is encoded in the data,
but most of it is lost when using conventional tools, such as one-point statistics and power
spectra. The wavelet scattering transform (WST), a low-variance statistical descriptor of
non-Gaussian processes, opens a path towards this goal.

After a presentation of the WST, we apply this transform to noise-free maps of dust
polarized thermal emission computed from a numerical simulation of MHD turbulence in
the diffuse ISM. We analyze normalized complex Stokes maps and maps of the polariza-
tion fraction and polarization angle. The WST yields a few thousand coefficients; some of
them measure the amplitude of the signal at a given scale, and the others characterize the
couplings between scales and orientations. The dependence on orientation can be fitted
with the reduced wavelet scattering transform (RWST), an angular model introduced in
[167] for total intensity maps. The RWST provides a statistical description of the polar-
ization maps, quantifying their multiscale properties in terms of isotropic and anisotropic
contributions. It allows us to exhibit the dependence of the data on the orientation of the
mean magnetic field and to quantify non-Gaussianity.

In this chapter, we establish a methodology, showing how we can extract a few hun-
dred interpretable statistical coefficients from polarization maps of the dust emission that
characterize its non-Gaussian properties. This constitutes a first step towards a statistical
modeling of the spatial properties of dust. Actual models based on the WST are discussed
in the next chapter.

This work has also motivated the development of a Python package, called PyWST,
designed to perform WST and RWST analyses of two-dimensional data.1 We refer to
Appendix C for a detailed presentation of this package.

Note that an important part of this chapter is directly extracted from [168].

1PyWST is available at https://github.com/bregaldo/pywst.
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III.1 The wavelet scattering transform

III.1.1 Motivations

The wavelet scattering transform (WST) was first introduced by Mallat in [169, 3]. One
of the main motivations from the perspective of data science was to provide a mathe-
matical framework to understand the properties of convolutional neural networks (CNNs,
see Sect. II.3.1 for an introduction) and the origin of their success for classification prob-
lems [166]. CNNs manage to build relevant representations of data that get rid of its
uninformative variability, thus allowing spectacular applications especially for classifica-
tion problems (see e.g. [170]). A core notion of these CNNs is that of invariance. CNNs
somehow learn to be invariant to the transformations that do not change the nature of the
data, thus projecting the high-dimensional data in a space of lower dimension where the
uninformative variability disappears. A concrete example is that of handwritten digits
classification as explained in [4]. For this type of problem, the classification of hand-
written digits should not be affected by a global translation or rotation of the input
image. Ideally, one thus needs a representation that remains invariant to these transfor-
mations. Similarly, different handwritings, which can assimilated to small deformations
of the digits, must not perturb the classification. However, a representation of the data
for handwritten digits classification cannot be completely invariant to deformations, as it
would for example involve misclassifications between the digit 7 and the digit 1 which can
be continuously deformed one into the other. Instead of an invariance to deformations, [4]
thus requires a linearization of deformations, called Lipschitz continuity to deformations,
so that the changes induced in the representation by a deformation remain controlled by
the size of this deformation.

The WST allows us to define such representations of data. These can be made invari-
ant to a given class of transformations (typically translations, rotations, or scalings), and
are Lipschitz-continuous to deformations by construction [3]. Contrary to CNNs, whose
filters are learned during a training step, the WST does not necessitate any training as
the filters are fixed a priori; these correspond to wavelets, as we will see. The WST has
been applied to various kinds of signals such as audio signals [171], images [4, 172], 3D
distributions of molecular electron density [173]. The WST also provides representations
of stationary non-Gaussian processes [3, 174], by means of so-called scattering moments.
The estimators of these moments benefit from a low-variance compared to usual esti-
mators of high-order moments (e.g. bispectrum). On a practical level, this means that
accurate estimates of the scattering moments do not necessarily require a large amount
of samples.

From the perspective of astrophysics, the interest of the WST mainly relies in that it
provides an interpretable low-variance characterization of non-Gaussian processes, with
a quantification of couplings between scales. Low-variance estimators are advantageous
for any astrophysical extended emission as, contrary to digits classification problems, we
are far from being overwhelmed by the amount of available data. Moreover, we will
see that the interpretability of the WST coefficients stems from the multiscale approach
introduced by the wavelet transform as well as the invariance and stability properties of
the transform. Let us finally mention that the WST can be applied locally, which is of
strong interest for statistically inhomogenous data, which are common in all observations.
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Fig. III.1 Real part (left) and imaginary part (right) of a 512 × 512 two-
dimensional Morlet wavelet ψ6,π/4. The wavelet is centered on the middle of
the map for a better visualization.

[167] provided the first astrophysical application of the WST, by applying it to col-
umn density maps inferred from MHD simulations and to an Herschel observation of the
thermal emission from Galactic dust [125]. The physical regularity of the maps led them
to introduce the reduced wavelet scattering transform (RWST), a statistical description
of reduced dimensionality, obtained through a fit of the angular dependence of the WST
coefficients. I extended this work to the analysis of simulated maps of the polarized ther-
mal emission of dust in [168]. We discuss in this chapter the common methodology of
these two previous works and present in details the results of [168]. Note that the WST
has since been applied to cosmological inference problems in [175, 176] in the context of
weak lensing, and more recently, [177] applied it to the classification of MHD simulations
in terms of sonic and Alfvénic Mach numbers.

We emphasize that although this approach relies on the wavelet transform, it dif-
fers from existing wavelet analysis strategies already discussed in the ISM literature (see
e.g. [178, 179]). Similarly to these previous strategies, the WST uses wavelets as build-
ing blocks for a multiscale analysis, however, it goes beyond classical analyses by also
quantifying interactions between scales.

III.1.2 Definition

We introduce here the WST for its application to image analysis in the same way as in
[4, 167]. We consider an image x of sizeM×N pixels which may be real or complex-valued.

a) The wavelet transform

The WST relies on the wavelet transform. We briefly introduce the wavelet transform
here, and refer the reader to Appendix B for additional details and illustrations.

A wavelet is a localized waveform with a zero mean which acts as a bandpass filter.
In this chapter we will make use of Morlet wavelets, which are essentially plane waves
modulated by Gaussian envelopes (see Fig. III.1). A Morlet wavelet is a quite general
kind of complex-valued wavelet to study physical fields and it provides a good angular
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selectivity [180]. It is defined in 2D as:

ψ (r) = α
(
eik0·r − β

)
e−|r|

2/2σ2
, (III.1)

with α and β two constants that are adjusted to ensure a zero mean and a unit L1 norm,
k0 = k0ex the wave vector of the plane wave factor, and σ the standard deviation of the
Gaussian envelope2,3. A bank of wavelets {ψj,θ}j,θ is built from dilations and rotations
of the initial wavelet ψ, called the mother wavelet, where j is an index of dilation and θ
is an angle of rotation. Formally, we have:

ψj,θ(r) = 2−2jψ(2−jR−1
θ r). (III.2)

The index j thus refers to a dilation by a factor 2j , and the scaling factor 2−2j in this
equation ensures the conservation of the L1 norm (see Appendix B for a definition) under
these dilations. The number of wavelets of our bank will be parametrized by two integers
J and L, where J is the number of dilations so that 0 ≤ j ≤ J−1, and L is the number of
discrete angles that evenly divide the interval [0, π) so that θ ∈ {kπ/L, 0 ≤ k ≤ L−1}. For
real-valued images we only need to consider θ ∈ [0, π), while for complex-valued images θ
will take its values in [0, 2π). The bank of wavelets will thus be made of either J × L or
2× J × L wavelets for the analysis of real or complex-valued images, respectively.

The wavelet transform of x is finally defined as the set of bandpass filtered maps
{x ? ψj,θ}j,θ, where ? denotes the circular convolution operation (see Appendix B for a
definition). These convolutions correspond to local bandpass filterings of x at spatial
frequencies centered on modes of the form kj,θ = k02−j (cos (θ) êx + sin (θ) êy).

b) The WST coefficients

Inspired by the structure of CNNs which cascades convolutions, pointwise nonlinearities,
and pooling operations, the WST of x is defined as a cascade of wavelet transforms,
pointwise moduli, and average pooling operations. The average pooling operations can
be done locally or globally, thus introducing respective local and global WST statistics.

Global WST. The WST coefficients S0, S1, S2, corresponding to the output of the
zeroth, first, and second layer of operations, respectively, are defined as follows:

S0 =
{
〈x〉 if x is real-valued,
〈|x|〉 if x is complex-valued,

(III.3)

S1(j1, θ1) = 〈|x ? ψj1,θ1 |〉, (III.4)
S2(j1, θ1, j2, θ2) = 〈||x ? ψj1,θ1 | ? ψj2,θ2 |〉, (III.5)

where the averaging operator 〈·〉 here is simply an average over the definition domain T ,
meaning 〈x〉 = 1

|T |
∫
T x(r)d2r with |T | the area of T . These coefficients depend on the

2In practice we choose k0 = 3π/4 pixel−1 and σ = 0.8 pixel as in [4].
3To simplify, we omit in Eq. (III.1) the fact that, in practice, the Gaussian envelope has an elliptical

shape. This elliptical shape enhances the angular selectivity of the wavelets. We refer to Appendix B for
additional details.
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Fig. III.2 Network structure of the WST. We show the cascade of convolutions,
pointwise moduli, and average operations leading to the definition of the WST
coefficients. For simplicity, we represent two outgoing edges per node only.

indices of the wavelets involved for each convolution. We can define coefficients for deeper
layers in a similar fashion, however, in practice, we only make use of the coefficients of
these first three layers. This will be justified below. We show in Fig. III.2 a schematic
view of the construction of WST coefficients, which illustrates the structural similarities
of the WST with a typical CNN (see Sect. II.3.1). Note that the WST coefficients are all
real coefficients.

Local WST. The WST coefficients can be computed locally by replacing the global av-
eraging operator 〈·〉 by local averages. The local WST may be relevant when the statistical
properties of x are not expected to be homogeneous, as for astrophysical observations. To
compute local averages, we usually introduce a low-pass filter φJ which depends on the
number of scales J we consider in our analysis. We typically choose a Gaussian window
with size 2J . Finally, the local WST coefficients simply correspond to local samples of
S0, S1, and S2, which are now functions of the position r and defined as:

S0(r) =
{
x ? φJ(r) if x is real-valued,
|x| ? φJ(r) if x is complex-valued,

(III.6)

S1(j1, θ1, r) = |x ? ψj1,θ1 | ? φJ(r), (III.7)
S2(j1, θ1, j2, θ2, r) = ||x ? ψj1,θ1 | ? ψj2,θ2 | ? φJ(r). (III.8)

Scattering moments. When x is viewed as the realization of a statistically homo-
geneous random field X, the WST coefficients may be considered as estimates of the
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scattering moments of X. These are defined similarly to the WST coefficients but re-
placing spatial averages 〈·〉 by expected value operators E [·] (and involving X instead
of x obviously). Natural estimators of the scattering moments are unbiased and have a
reduced variance compared to estimators of high-order moments as discussed in [4]. We
will conveniently conflate these two views in the context of this thesis.

c) Normalization and interpretation

In practice, we will make use of normalized coefficients S̄0, S̄1, and S̄2. These are defined
in a similar way as in [174], that is, in the case of global WST coefficients:

S̄0 = S0, (III.9)

S̄1(j1, θ1) = 〈|x ? ψj1,θ1 |〉
S0

, (III.10)

S̄2(j1, θ1, j2, θ2) = 〈||x ? ψj1,θ1 | ? ψj2,θ2 |〉
S1(j1, θ1) . (III.11)

Note that S̄0 and S0 are identical. This normalization allows us to increase the invariance
of the coefficients of the first and second layers. It makes both first and second-layer
coefficients invariant to a multiplication of x by a global factor. Added to that, S̄2
coefficients at fixed (j1, θ1) are invariant to linear filters with a uniform action on the
bandpass of the wavelet ψj1,θ1 .

These normalized coefficients can be interpreted in the following manner: S̄0 is sim-
ply the mean of the field (or of its modulus when x is complex-valued), S̄1(j1, θ1) is a
measure of the amplitude of modes of the normalized field x/〈x〉 (or x/〈|x|〉) that are cen-
tered on kj1,θ1 , and finally S̄2(j1, θ1, j2, θ2) characterizes how the normalized amplitude of
modes centered on kj1,θ1 is modulated by modes centered on kj2,θ2 . In other words, the
S̄1(j1, θ1) coefficient characterizes the amplitude at a single oriented scale (j1, θ1), while
the S̄2(j1, θ1, j2, θ2) coefficient measures a form of coupling between two oriented scales
(j1, θ1) and (j2, θ2).

We note that even if the S̄1 coefficients characterize the Fourier amplitude of the field
under study in the spectral band of the wavelets, they differ in practice from the power
spectrum. While the power spectrum relates to L2 norms of the wavelet transform, the S̄1
coefficients involve L1 norms. One can however recover the power spectrum with a good
approximation from a quadratic sum of S̄1 and S̄2 coefficients4. Notably, we expect a non-
Gaussian field to have higher S̄2 coefficients compared to those of a Gaussian field with
identical power spectrum, and this should be counterbalanced by smaller S̄1 coefficients.
This is related to the sparsity of the wavelet representation of the data (see [167] and [4]
for further discussions).

The WST coefficients of x also relate to some of its normalized high-order moments
up to the order 4 [3]. However, it is not clear how these may relate to the bispectrum
mentioned in Sect. II.1.3. Let us also point out that if the phases of the {x ? ψj,θ}
signals naturally disappear once the modulus is applied, this does not mean that this
phase information is completely lost as it can be recovered from the {|x ? ψj,θ|} signals
for particular wavelets [4, 181].

4See Eq. (9) in [167].
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III.1.3 Properties

We now discuss the properties of the WST. Let us call S[x] = {S0, S1, S2} the set of WST
coefficients associated to an image x, and ‖S[x]‖ the Euclidean norm of the corresponding
vector of coefficients. The energy of an image x is defined as its quadratic Euclidean norm
‖x‖2.

Inspired by the invariance properties of CNNs, the global WST is naturally invariant
to translations, due to the covariance of convolutions with respect to translations5 and
the action of the map average operator. For local descriptions however, the local WST
coefficients are only invariant to local translations. No rotational invariance is enforced
here. While it is not a limitation of the approach (see [3, 172] for alternative definitions
of the WST), a rotational invariance would be irrelevant for the characterization of the
dust foreground as we will see. However, note that the WST as defined here is covariant
to the finite group of rotations including rotations by angles that are multiple of π/L,
which is the discretization step of the angular variable θ chosen for the construction of
the wavelet bank.

The WST is a nonexpansive transform, meaning that for two images x and y, we have:

‖S[x]− S[y]‖ ≤ ‖x− y‖ . (III.12)

This property makes the WST stable to additive noise, and the estimators of the scattering
moments of reduced variance [4]. The WST is also able to linearize small deformations,
being Lipschitz continuous to deformations [3, 4]. This makes the WST stable to defor-
mations, which is of prime importance for classification purposes as discussed previously.

For appropriate wavelets which would make the wavelet transform unitary (see Ap-
pendix B), the WST preserves the signal energy [3, 4], allowing us to write:

‖x‖2 = ‖S[x]‖2 + ε

= S2
0 +

∑
j1,θ1

S1(j1, θ1)2 +
∑

j1,θ1,j2,θ2

S2(j1, θ1, j2, θ2)2 + ε, (III.13)

where ε is a complementary minor term corresponding to the energy contained in higher-
order WST coefficients. In practice, the energy contained in the coefficients of higher
order rapidly decreases as the order increases, which is one of the reasons why we restrain
the WST to S0, S1, and S2 coefficients for image analysis [4]. Moreover, this relation
shows that sparse wavelet coefficients, characterized by low S1 values, necessarily involve
a propagation of energy towards higher order coefficients. However, we must say that for
Morlet wavelets, the wavelet transform is not unitary, and this conservation of energy is
not exact even if it is reasonably well approximated.

Nevertheless, a conservation of energy does not imply a preservation of the information
contained in the signal. Generally, the WST cannot be inverted, so that reconstructions
based on WST coefficients only cannot be exact [4]. However, as we shall see it in the
next chapter, the WST coefficients may define relevant statistical models, showing that
statistical information may be correctly preserved to a certain extent.

5An operator A acting on functions f : Rn → C is covariant (or equivariant) to translations if for any
translation Lτf of a given function f , that is Lτf(r) = f(r+ τ ), we have A[Lτf ] = LτA[f ]. This notion
may be extended to other symmetry groups.
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S0 S1 S2 Total

real field 1 56 1344 1401

complex field 1 112 2688 2801

Table III.1 – Number of WST coefficients per layer for J = 7 and L = 8 for both real and
complex-valued data cases.

Not all the coefficients of the WST are equally informative. First, the modulus tends
to push the energy of wavelet coefficients to lower frequencies, so that in practice S2
coefficients with j2 ≤ j1 are negligible, thus allowing to restrain the computation of
S2 coefficients with j2 > j1 only. Second, because for a Morlet wavelet ψj,θ we have
ψ∗j,θ = ψj,θ+π, provided x is a real-valued image, the WST coefficients verify:

S1(j1, θ1 + π) = S1(j1, θ1), (III.14)
S2(j1, θ1 + π, j2, θ2) = S2(j1, θ1, j2, θ2), (III.15)
S2(j1, θ1, j2, θ2 + π) = S2(j1, θ1, j2, θ2). (III.16)

For this reason, for real-valued images we only consider θ1, θ2 ∈ [0, π). However, in the
case of complex-valued images, only Eq. (III.16) holds in general, so that we will consider
θ1 ∈ [0, 2π) and θ2 ∈ [0, π). Consequently, taking into account these simplifications, the
effective number of global coefficients will be for a real-valued map: a single S0 coefficient,
J × L S1 coefficients, and L2 × J × (J − 1)/2 S2 coefficients. And, for a complex-valued
map, there will be twice as many S1 and S2 coefficients. We give in Table III.1 the
corresponding number of coefficients per layer for J = 7 and L = 8, which are the
parameters chosen in the following.

III.2 Methodology illustrated on simulated Stokes maps
We now employ the WST to describe simulated data of the polarized dust emission.
The main focus of this section is to introduce the methodology of our analysis, showing
how immediate properties of regularity in the WST coefficients may be leveraged to
define reduced WST (RWST) coefficients, which constitute a simple and interpretable
description of the non-Gaussian statistical properties of the dust emission. We will focus
on the statistics of polarization maps as it is the main target for B-mode detection,
although this methodology remains general and applies similarly to intensity maps.

III.2.1 Building simulated Stokes maps
We work with Stokes maps I, Q, and U which are directly computed though integrations
along a given direction of 3D cubes of data extracted from a numerical simulation of
magnetized interstellar turbulence (this direction of integration is the analog of the line
of sight for observations). This procedure follows what was already outlined in Sect. I.3.4.
Working with simulated data avoids the usual complications of observational data, namely
noise, non-periodic boundary conditions, and potential statistical inhomogeneity. As a
first step, this will facilitate the physical interpretation of our statistical descriptions.
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a) Presentation of the simulation

We use a MHD simulation designed to study the biphasic nature of the diffuse ISM
within the context of [117]. The simulation employs the adaptive mesh refinement code
RAMSES [112, 113] to solve the equations of ideal MHD as described in [182], neglecting
self-gravity and taking into account heating and cooling processes of the gas. A turbulent
forcing is applied to inject kinetic energy and balance numerical dissipation, thus allowing
the simulation to reach a statistical steady state. In practice this turbulent forcing consists
in a large-scale stochastic force field (a three component Ornstein-Uhlenbeck process
defined in spectral space). Details on the turbulent forcing model can be found in [119].

The simulation volume is a (50 pc)3 box divided into 5123 cells with periodic boundary
conditions. At t = 0 the gas has uniform properties with a density nH = 1.5 cm−3 and
a temperature T = 8000 K, and the magnetic field is also uniform, with B0 = B0ex and
B0 ∼ 3.8 µG. In steady state, the turbulent forcing leads to an approximate velocity
dispersion σv ∼ 2.6 km/s. At the scale of the box, that is 50 pc, the turnover time is thus
τL ≈ 18.8 Myr. Finally, an isotropic Habing radiation field is applied at the boundaries
of the box. Its intensity is scaled by a factor G0 = 1 (see [75] for a definition).

Once the simulation has reached a statistical steady state, we extract 14 snapshots
that are approximately statistically independent using an approach similar to [183]. In
practice we make sure that two consecutive snapshots correspond to a minimal time
evolution of δτ = 1.25 Myr which is roughly ten percent of τL. The phenomenology of
turbulence in the sense of Kolmogorov shows that the turnover time τl at a given scale
l scales as l2/3 [84]. This scaling holds for incompressible hydrodynamical turbulence
only but we assume for the sake of simplicity that it extends reasonably well to ideal
compressible MHD. At the range of scales considered in the following, we find that δτ
is about fives times smaller than the corresponding largest value of τl. Although this
value is not completely satisfactory, we assume in the following that the snapshots are
statistically independent.

b) Stokes maps derivation

We compute a set of Stokes maps I, Q, and U for each of these snapshots following
Eqs. (II.12)-(II.14) and choosing both the z-axis and the x-axis of the cubes as the di-
rections of integration. This integration procedure is identical to the one used in [103].
We choose a typical value for the polarization fraction parameter p0 = 0.2 and arbitrary
values for σν and Td as these only determine the global amplitude of I, Q and U maps,
which does not impact the following analysis. These maps are relevant for any frequency
ν provided that the dust emission remains optically thin.

We will not work directly with these Stokes maps, but rather focus on the statistical
properties of complementary maps derived from them. These are chosen to ease the
physical interpretation of the data and hopefully simplify the statistics. We compute three
kinds of dimensionless maps: a normalized version of the polarization mapsQ+iU denoted
Q̃+ iŨ , polarization fraction maps p and complex polarization angle maps exp(2iψ) (see
Sect. I.3.3 for a definition of p and ψ). The normalized variable Q̃+ iŨ is defined as
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follows:

Q̃+ iŨ = Q+ iU

I + P
, (III.17)

with P = |Q + iU | the polarized intensity. This definition allows to roughly disentangle
the structure of the magnetic field and the structure of dust density, at least at the lowest
order. Indeed, in the limit where the orientation of the magnetic field is constant along
the line of sight, one gets using Eqs. (II.12)-(II.14):

Q̃+ iŨ = 3p0
3 + 2p0

cos2 γ exp(2iφ), (III.18)

which is independent of the density field nH. Also, we choose to study exp(2iψ) maps
rather than ψ maps to avoid an unnecessary complication of the statistics due to the
nonlinear action of the atan2 function as well as non-physical spatial discontinuities in ψ
maps where the polarization angle approaches ±π/2. Moreover, we expect the statistical
properties of exp(2iψ) to be easier to compare to those of Q̃+iŨ since Q̃+iŨ ≈ p exp(2iψ)
when P � I (which is typically the case).

We emphasize that using the complex variable Q+ iU instead of Q and U separately
is not just a mathematical convenience. Indeed, we have seen in Sect. I.2.1 that Q + iU
is a spin-2 quantity, so that its global phase is directly related to the reference frame in
which γ and φ are defined. The complex variable Q + iU is thus more apt to represent
linear polarization than Q and U separately (see e.g. [184]). Moreover, we will see in the
next subsection that it will ease the definition of a statistical description of polarization
maps that is independent from this choice of reference frame.

c) Statistical isotropy/anisotropy of the maps

We point out that the initial conditions of the MHD simulation are anisotropic because
of the initial direction of the uniform magnetic field. This anisotropy remains once the
simulation has reached a steady state, due to magnetic flux conservation, and the value
of the mean magnetic field is B̄ ≈ B0. This privileged direction in the simulation has
an impact on the properties of isotropy of the derived maps. Indeed, when integrating
along the z-axis, the direction of integration is orthogonal to the direction of the mean
magnetic field B̄ in the simulation, so that we expect these derived maps to be statistically
anisotropic. On the contrary, when integrating along the x-axis, which is the direction of
the mean magnetic field, we expect statistically isotropic maps. We refer to the first set
of maps with ⊥, and to the second one with ‖. For instance, we call p⊥ data set the set
of 14 maps of polarization fraction p computed from the 14 maps I, Q, and U for which
the z-axis was the axis of integration.

III.2.2 Presentation of the data sets
We make use of eight data sets, each one comprising 14 statistically independent maps.
The various maps presented in the last subsection define 6 data sets: exp(2iψ)⊥, p⊥, Q̃⊥+
iŨ⊥, exp (2iψ)‖, p‖, and Q̃‖ + iŨ‖. In addition, we also analyze phase randomized data
sets R[Q̃⊥ + iŨ⊥] and R[Q̃‖ + iŨ‖] built respectively from the Q̃⊥ + iŨ⊥ and Q̃‖ + iŨ‖
data sets.
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Fig. III.3 Examples of I⊥, Q⊥, U⊥, P⊥, Q̃⊥, Ũ⊥, p⊥, cos(2ψ)⊥, and sin(2ψ)⊥
maps (from top to bottom and left to right) that are built from a given snapshot
of the MHD simulation.

The phase randomization operator R[·] acts on a map by randomizing the phases in
Fourier space, meaning that the new phases are drawn independently for each mode from
a uniform distribution on [0, 2π). On the contrary, the moduli of the Fourier coefficients
are retained during this operation so that the power spectrum is unchanged. The phase
information of an image is tightly bound to its structure [185, 186] and the main effect
of the R[·] operator is to severely damage the structure of the image. We use phase
randomization as a simple way to approximate Gaussianization6. We have checked a
posteriori that a standard Gaussian random field generation (see Appendix A) does not
impact the analysis. In practice R[Q̃⊥ + iŨ⊥] (respectively R[Q̃‖ + iŨ‖]) refers to the set
of 14 maps produced by randomizing separately Q̃ and Ũ maps from the Q̃⊥ + iŨ⊥ data
set (respectively Q̃‖+ iŨ‖). Technical details and illustrations about phase randomization
can be found in Appendix A.

Figure III.3 shows examples of maps for the I⊥, Q⊥, U⊥, P⊥, Q̃⊥, Ũ⊥, p⊥, cos(2ψ)⊥,

6Stationary Gaussian random fields (GRFs) do have uniformly distributed phases on [0, 2π) but this
property alone does not define them (see [187] and Appendix A).
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Fig. III.4 Same as Fig. III.3 but for the I‖, Q‖, U‖, P‖, Q̃‖, Ũ‖, p‖, cos(2ψ)‖,
and sin(2ψ)‖ data sets.

and sin(2ψ)⊥ data sets, while Fig. III.4 shows examples of maps for the corresponding
‖ data sets. These figures show maps that all rely on the same snapshot of the MHD
simulation. We draw the attention of the reader to a few points. First, we clearly see
filamentary patterns on these maps that will demand a statistical description involving
higher orders statistics compared to simple power spectra. We also note that P is an
order of magnitude lower than the intensity I (this is due to the value of the polarization
fraction parameter p0). Hence we have approximately Q̃ + iŨ ≈ (Q + iU)/I so that
p roughly behaves as the modulus of Q̃ + iŨ , and 2ψ roughly behaves as its complex
argument. Next, we note that the magnitude of p‖ is unsurprisingly much lower than
that of p⊥ as the direction of the projection of the local magnetic field on the plane of
the sky is much less coherent along the line of sight when the line of sight corresponds to
the direction of the mean magnetic field. Finally, we see on the cos(2ψ)⊥ map that the
anisotropy of the magnetic field in the simulation leads to values that are concentrated
close to 1.



III.2 Methodology illustrated on simulated Stokes maps 61

j 0 1 2 3 4 5 6

λ̃ [pixels] 2.67 5.33 10.7 21.3 42.7 85.3 171

λ [pc] 0.26 0.52 1.04 2.08 4.17 8.33 16.7

Table III.2 – Correspondence between scale index j and related wavelengths on simulated
maps, both in pixel units and dimensional units. Those wavelengths λ̃ come from the
definition of dilated Morlet wavelets ψj,θ (for more details, see [4]).

III.2.3 Regularity in the WST coefficients

We now focus on the WST coefficients associated with the Q̃⊥ + iŨ⊥ data set, but the
following reasoning remains valid similarly for the other data sets.

For the 14 maps of the Q̃⊥ + iŨ⊥ data set, we compute the WST coefficients with
J = 7 and L = 8 (see Eqs. (III.9)-(III.11)). J could have been fixed to a higher value
for 512 × 512 maps, but because of our limited number of maps we chose to restrict
our statistical description to scales for which we have a sufficient number of modes for
reliable estimations. We give in Table III.2 the correspondence between the scale index
j and the central wavelength of the related dilated Morlet wavelet both in pixel units
and in dimensional units (related to the MHD simulation). These J and L values lead
to 2801 coefficients per map (see Table III.1). We define mean S̄0, S̄1 and S̄2 coefficients
as means of the WST coefficients over the 14 maps and we also compute the standard
deviation of the mean for each of these coefficients assuming that the maps are statistically
independent.

Figures III.5 and III.6 represent (in blue) respectively S̄1(j1, θ1) coefficients and a
representative subsample of S̄2(j1, θ1, j2, θ2) coefficients (for j1 = 1) on a logarithmic
scale, for Q̃⊥+ iŨ⊥. In both figures, we represent the multivariate functions S̄1 and S̄2 in
a lexicographical order for the (j1, θ1) and (j1, θ1, j2, θ2) variables, respectively. Vertical
gray lines help to mark increments of these variables.

In Fig. III.5, we see that for each scale j1 a smooth pattern with respect to the angular
variable θ1 emerges. This smoothness is not surprising as it reflects the regularity of the
underlying physical processes. Much more surprising is the apparent π-periodicity of
these smooth patterns for every j1. S̄1 coefficients are naturally 2π-periodic with respect
to the angular variable θ1, but here this π-periodicity with respect to the angular variable
θ1 was unexpected. Let us rephrase this result by noticing that:

|(Q̃+ iŨ) ? ψj,θ| = |[(Q̃+ iŨ) ? ψj,θ]∗| = |(Q̃− iŨ) ? ψj,θ+π|, (III.19)

as Morlet wavelets verify ψ∗j,θ = ψj,θ+π. Therefore, a π-periodicity of S̄1 coefficients with
respect to θ1 is equivalent to the fact that Q̃+ iŨ and Q̃− iŨ share the same WST first
order statistics.

We can identify the same kind of regularity properties for S̄2 coefficients in Fig. III.6.
However, since S̄2 coefficients depend on four variables, it is hard to clearly identify the
extent of this angular regularity on this figure. In order to better exhibit it, we show in
Fig. III.7 S̄2 coefficients as a surface parametrized by θ1 and θ2 for arbitrary fixed values
of j1 and j2. Smooth angular patterns are obvious. In particular we see that θ1 − θ2 = c
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Fig. III.5 WST coefficients S̄1(j1, θ1) on a logarithmic scale for the Q̃⊥ + iŨ⊥
data set, presented in a lexicographical order on (j1, θ1). Vertical dashed lines
delimit distinct j1 values. The top panel shows the original data (solid lines) and
the RWST fit (dotted lines) corresponding to the model of Eq. (III.20), while
the bottom panel shows the normalized residuals of the fit.
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Fig. III.6 j1 = 1 selection of WST coefficients S̄2(j1, θ1, j2, θ2) on a logarith-
mic scale for the Q̃⊥ + iŨ⊥ data set presented in a lexicographical order on
(j1, θ1, j2, θ2). This specific selection of coefficients is arbitrary, and we find sim-
ilar results for other scales and the other data sets. Vertical dashed and dotted
lines delimit distinct θ1 and j2 values, respectively. The top panel shows the
original data (solid lines) and the RWST fit (dotted lines) corresponding to the
model of Eq. (III.21), while the bottom panel shows the normalized residuals of
the fit.
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Fig. III.7 Surface representation of WST coefficients S̄2(j1 = 1, θ1, j2 = 3, θ2)
for the Q̃⊥ + iŨ⊥ data set as a function of θ1 and θ2 only.

cuts of this surface for arbitrary constants c give roughly constant S̄2 coefficients. The
angular modulation thus seems to depend on the θ2 − θ1 variable only for this data set.

III.2.4 Simplification of the WST description with the reduced WST

The smooth periodic patterns identified in the Q̃⊥+ iŨ⊥ WST coefficients suggest that a
simplification of the WST statistical description is possible through an adequate modeling
of its angular dependence. The purpose of such a modeling of the WST coefficients is
twofold: 1) lowering the dimensionality of the statistical description of our data, and 2)
providing an interpretable representation of this angular dependence in terms of isotropic
and anisotropic properties of the data.

a) The RWST model

We model the regularity of WST coefficients with respect to angular variables θ1 and
θ2 using the RWST model introduced in [167]. It is remarkable that a model developed
for total intensity maps may be applied to Q̃ + iŨ complex Stokes maps of polarized
thermal emission of dust without any modification. This highlights the generality of such
an angular modeling of the WST coefficients for astrophysical maps, and this model may
surely be extended to other kinds of complex-valued fields in physics.

We now briefly recall the RWST model, and refer the reader to [167] for more details.
In the RWST model, the S̄1 coefficients are written as:

log2

[
S̄1 (j1, θ1)

]
= Ŝiso

1 (j1) + Ŝaniso
1 (j1) cos

(
2
[
θ1 − θref,1 (j1)

])
, (III.20)

where Ŝiso
1 (j1), Ŝaniso

1 (j1), and θref,1(j1) are parameters depending on the scale j1. This
model thus depends on 3× J parameters. We also enforce Ŝaniso

1 (j1) ≥ 0 in order to lift a
degeneracy between the Ŝaniso

1 (j1) and θref,1 parameters. Ŝiso
1 (j1) quantifies the isotropic
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component of the data fluctuations at a scale j1, while Ŝaniso
1 (j1) corresponds to the degree

of angular modulation of the coefficients at scale j1, introducing a reference angle θref,1(j1)
that defines a privileged direction in the maps 7.

Similarly, the RWST model for S̄2 coefficients reads:

log2

[
S̄2 (j1, θ1, j2, θ2)

]
= Ŝiso,1

2 (j1, j2)

+Ŝiso,2
2 (j1, j2) cos (2 [θ1 − θ2])

+Ŝaniso,1
2 (j1, j2) cos

(
2
[
θ1 − θref,2 (j1, j2)

])
+Ŝaniso,2

2 (j1, j2) cos
(
2
[
θ2 − θref,2 (j1, j2)

])
, (III.21)

where Ŝiso,1
2 (j1, j2), Ŝiso,2

2 (j1, j2), Ŝaniso,1
2 (j1, j2), Ŝaniso,2

2 (j1, j2), and θref,2(j1, j2) are the
parameters of this angular model for each pair of scales (j1, j2). As we have j2 > j1,
we end up with 5 × J × (J − 1)/2 parameters for this model. Here again we make sure
that Ŝaniso,1

2 (j1, j2) ≥ 0 to avoid any parameter degeneracy. Ŝiso,1
2 measures the overall

amplitude of coupling between the scales j1 and j2. Ŝiso,2
2 represents the amplitude of

the modulation due to the relative orientation of the wavelets ψj1,θ1 and ψj2,θ2 , and
we interpret it as a signature of filamentary structures at a given scale. Indeed for an
oriented filamentary structure, we expect the S̄2 coefficients to peak when θ2 = θ1 and to
reach a minimum when θ2 = θ1 + π/2. Finally, Ŝaniso,1

2 and Ŝaniso,2
2 are measures of the

anisotropic properties of the data in second order WST coefficients, here decoupling θ1
and θ2 contributions.

b) Fourier perspective

Such a model is the logical consequence of the angular regularity of the coefficients with
a few additional assumptions. Indeed, let us rephrase the RWST model in terms of
truncated Fourier series. We consider the log2(S̄1) coefficients at a given scale j1 and
write fj1(θ1) the corresponding angular model8. If one assumes that there are no more
than one privileged direction θref,1(j1) in the maps we are dealing with, we can write
generally fj1(θ1) as a Fourier series expansion using the natural 2π-periodicity of this
function:

fj1(θ1) = a0(j1) +
+∞∑
k=1

[
ak(j1) cos

(
k
[
θ1 − θref,1 (j1)

])
+

bk(j1) sin
(
k
[
θ1 − θref,1 (j1)

])]
. (III.22)

Assuming a mirror symmetry with respect to the potential reference direction, we expect
{bk} coefficients to vanish (which is the case in practice for our data). Adding to that the
π-periodicity identified previously the angular model reduces to:

fj1(θ1) = a0(j1) +
+∞∑
p=1

a2p(j1) cos
(
2p
[
θ1 − θref,1 (j1)

])
. (III.23)

7We note that Eq. (III.20) defines an angular model of the logarithm of the WST coefficients that turns
angular modulations of the WST coefficients into additive corrections Ŝaniso

1 (j1) cos
(
2
[
θ1 − θref,1 (j1)

])
to the isotropic amplitude of fluctuations Ŝiso

1 (j1). We use a base 2 logarithm to be consistent with the
base 2 definition of scales j1 and j2.

8The same kind of reasoning holds for log2(S̄2) coefficients.
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Fig. III.8 Reduced chi square χ2,S1
r (j1) (left) and χ2,S2

r (j1, j2) (right) associated
with the RWST fit of the WST coefficients (see Eqs. (III.20) and (III.21)) for the
Q̃⊥+ iŨ⊥ data set. In the right panel, each curve corresponds to a fixed j1 value
with j2 varying from j1 + 1 to J − 1 = 6. For j1 = J − 2, the curve is reduced
to a single dot on the figure. We use logarithmic scales for better visibility.

Finally, the smoothness of the patterns presented previously implies a fast decrease of the
amplitudes of the harmonics. Truncating the expansion after the second term and writing
a0(j1) = Ŝiso

1 (j1) and a2(j1) = Ŝaniso
1 (j1) we end up with the RWST model of Eq. (III.20).

c) Fit of the model

In practice, for a given data set, this RWST model of the angular dependence is indepen-
dently fitted to the first order WST coefficients for every scale j1, and to the second order
WST coefficients for every pair of scales (j1, j2) (with j2 > j1). The accuracy of these
multiple fits is quantified with χ2

r statistics as described in [167]. Since it is not possible
to properly estimate the full covariance matrix with only 14 samples per coefficient, the
uncertainties affecting the WST coefficients for a given data set are simply estimated from
the sample variance across the various simulation snapshots.

However an important correlation of the first order WST coefficients across angles for
each scale j1 needs to be taken into account to properly estimate statistical uncertainties.
For each sample we compute a mean coefficient across angles for a given scale and subtract
this mean before computing the statistical uncertainties9. This mitigates most of the
correlation between WST coefficients at the same scale j1.

Figure III.8 shows the χ2
r values for both log2(S̄1) and log2(S̄2) fits for the Q̃⊥+ iŨ⊥

data set. The χ2
r values are globally close to 1 except at low j1 for χ2,S1

r and at low j2− j1
for χ2,S2

r . This deterioration of the goodnesses of the fits is due to a pixellization effect at
small scales, and may be fixed by adding adequate lattice terms in the RWST model as
described in the next section. Finally, the same RWST model applies to the other data
sets used in this work, including exp(2iψ) and p data sets, and we get for all of them
similar χ2

r values.
In Figs. III.5 and III.6 we show the RWST fit overplotted on a selection of first and

9This decreases the effective number of degrees of freedom by one when computing χ2
r values.
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Fig. III.9 Same as Fig. III.8 for the RWST fits of the WST coefficients that
take into account lattice terms (see Eqs. (III.24) and (III.25) for the Q̃⊥ + iŨ⊥
data set.

second order WST coefficients, and also show the corresponding normalized residuals.
The curves are globally in good agreement and the flaws of the RWST model due to
numerical effects at low j1 and j2 − j1 appear as clear patterns in the residuals.

In the end, the RWST coefficients define statistical descriptions of the data sets in
terms of simple considerations of isotropy and anisotropy with respect to a reference
direction. Furthermore, these statistical descriptions exhibit much lower dimensionality,
with a total of 127 coefficients (including the S̄0 coefficient in the description) compared to
the original 2801 WST coefficients in the case of complex variables Q̃+iŨ and exp(2iψ)10,
thus providing a very large compression of the statistical information contained in the
WST coefficients.

d) Extension of the model

Following the appendix C of [167], we may enhance the RWSTmodel defined in Eq. (III.20)
and (III.21) by adding so-called lattice terms related to pixellization effects at small scales
for first order coefficients and a supplementary harmonic of the angular modulation of the
second order WST coefficients. This enhanced RWST model of the angular dependency
of the WST coefficients becomes, for S̄1 coefficients:

log2

[
S̄1 (j1, θ1)

]
=Ŝiso

1 (j1)

+Ŝaniso
1 (j1) cos

(
2
[
θ1 − θref,1 (j1)

])
+Ŝlat,1

1 (j1) cos (4θ1) + Ŝlat,2
1 (j1) cos (8θ1) , (III.24)

where the additional lattice terms Ŝlat,1
1 and Ŝlat,2

1 quantify angular modulations that are
respectively π/2 and π/4-periodic and aligned with the main directions of the lattice.

10For p maps, the WST descriptions consist of 1401 coefficients.
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Fig. III.10 Same as Fig. III.5 but for the RWST fit corresponding to the model
of Eq. (III.24) including lattice terms.
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Fig. III.11 Same as Fig. III.6 but for the RWST fit corresponding to the model
of Eq. (III.25) including lattice terms.
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Similarly the enhanced RWST model of S̄2 coefficients is:

log2

[
S̄2 (j1, θ1, j2, θ2)

]
= Ŝiso,1

2 (j1, j2)

+Ŝiso,2
2 (j1, j2) cos (2 [θ1 − θ2])

+Ŝiso,3
2 (j1, j2) cos (4 [θ1 − θ2])

+Ŝaniso,1
2 (j1, j2) cos

(
2
[
θ1 − θref,2 (j1, j2)

])
+Ŝaniso,2

2 (j1, j2) cos
(
2
[
θ2 − θref,2 (j1, j2)

])
, (III.25)

where the additional term Ŝiso,3
2 measures the amplitude of an additional harmonic of the

θ1 − θ2 angular modulation that is π/2-periodic.
These additional terms do not affect the values of the RWST coefficients discussed

above and significantly improve χ2,S1
r and χ2,S2

r at small scales as shown in Fig. III.9.
These curves are to be compared to those of Fig. III.8. Figures III.10 and III.11 show
greatly improved normalized residuals compared to the ones shown in Figs. III.5 and III.6.
In particular at j1 = 0 we no longer observe the strong angular pattern seen in Fig. III.5.

III.3 RWST data analysis and interpretation

In this section we analyze and interpret the RWST statistical descriptions for the 8 data
sets built from the same MHD simulation. We relate the coefficients of these descriptions
to the physical properties of the simulation.

III.3.1 Isotropic fluctuations in first order coefficients Ŝiso
1

Figure III.12 presents Ŝiso
1 + log2(S̄0) coefficients as a function of scale for the Q̃⊥ + iŨ⊥,

Q̃‖ + iŨ‖, R[Q̃⊥+iŨ⊥], and R[Q̃‖+iŨ‖] data sets. We note that the log2(S̄0) term cancels
the normalization of the S̄1 WST coefficients defined in Eq. (III.10) in order to analyze
the statistics of Q̃ + iŨ (and not the statistics of (Q̃ + iŨ)/〈|Q̃ + iŨ |〉). We see that
Ŝiso

1 + log2(S̄0) levels, which measure an amplitude of fluctuations of the signal per scale,
are higher for Q̃⊥ + iŨ⊥ and R[Q̃⊥ + iŨ⊥] than for the corresponding ‖ data sets. This
shows that the amplitudes differ depending on the orientation of the mean magnetic field
with respect to the line of sight. We have more fluctuations within Q̃ + iŨ maps when
the mean magnetic field is in the plane of the sky.

The differences between the Q̃+ iŨ data set and its corresponding randomized coun-
terpart R[Q̃+ iŨ ] (in both ⊥ and ‖ cases) illustrate the difference between S̄1 coefficients
and the power spectrum. Indeed, Q̃ + iŨ and R[Q̃ + iŨ ] maps share the same power
spectrum but have different S̄1 coefficients. The fact that the R[·] operator increases the
S̄1 values leaving the power spectrum unchanged shows that it reduces the sparsity of
these maps (see discussion in Sect. III.1.2). This feature underlines the non-Gaussianity
of the Q̃+ iŨ data set and we therefore expect its second order coefficients to be higher
compared to those of the corresponding randomized data set (see Sect. III.3.3). We note
that these differences wear off at large scales. We interpret this as statistical evidence
that the non-Gaussianity of Q̃+ iŨ maps decreases at large scales. This result may reflect
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Ŝ
is

o
1

(j
1
)

+
lo

g
2
(S̄

0
)

Q̃⊥ + iŨ⊥
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Fig. III.12 Ŝiso
1 (j1) + log2(S̄0) RWST coefficients for the Q̃⊥ + iŨ⊥, Q̃‖ + iŨ‖,
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exp(2iψ)‖

p‖

Fig. III.13 Ŝiso
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a characteristic of interstellar turbulence but could also follow from the fact that we start
to probe the Gaussian distribution of the turbulent forcing of the simulation.

In Fig. III.13, we compare Q̃ + iŨ Ŝiso
1 coefficients to those of p and exp(2iψ) for

‖ and ⊥ data sets. Since we have Q̃ + iŨ ≈ p exp(2iψ) we would like to compare the
relative contributions of Ŝiso

1 coefficients of Q̃+iŨ maps, but this seems more complicated
than expected as we found out that a proper comparison through Ŝiso

1 coefficients highly
depends on the choice of normalization of the WST coefficients for p.

Ŝiso
1 coefficients roughly range from −4.5 to −3.0 for exp(2iψ)‖ while they range from

−5.8 to −4.2 for exp(2iψ)⊥. These differences indicate larger fluctuations of the polariza-
tion angle when the mean magnetic field is along the line of sight compared to when the
mean magnetic field is in the plane of the sky. Since the average polarization fraction p is
lower when the mean magnetic field is along the line of sight (S̄0 ≈ 0.03 for p‖ compared
to S̄0 ≈ 0.1 for p⊥) this feature is consistent with the anti-correlation observed between
the angle dispersion function S and the polarization fraction p [103, 58, 188].

III.3.2 Anisotropic fluctuations in first order coefficients Ŝaniso
1

Ŝaniso
1 coefficients measure the angular modulation of the first order WST coefficients.

They are presented in Fig. III.14 for all data sets. We see that this anisotropy is much
larger for ⊥ data sets than for ‖ ones, except for the p⊥ data set which has a rather low
anisotropy level. These differences are not surprising as we expect a stronger anisotropy
when the mean magnetic field is in the plane of the sky, while statistical isotropy is
expected when integrating along the mean magnetic field. For larger scales, we see an
increase of these coefficients for ⊥ data sets. This trend has already been noticed on
observational data of the Polaris flare in total intensity [167] and deserves a closer exam-
ination.

As explained in Sect. III.2.1 the large scales of consecutive snapshots could be corre-
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lated to some extent. To assess the potential impact of these correlations on our analysis,
we have computed separate RWST statistics for three maps of the Q̃⊥ + iŨ⊥ data set
corresponding to snapshots that are sufficiently distant in time to be confident in their
independence (we choose 6 × δτ instead of δτ). The increase of Ŝaniso

1 coefficients at
large scales remains significant for each map, which demonstrates that this trend is not a
consequence of correlations among snapshots.

Reference angles θref,1 also presented in Fig. III.14 show that the preferential direc-
tion identified for anisotropic ⊥ data sets (except for p⊥) is the direction corresponding
to θref,1 = 0 for all scales j1. Such a value of the reference angle indicates a statistical
tendency for structures, including filaments, to be elongated vertically rather than hori-
zontally, that is, along the y axis in Fig. III.3. This corresponds to an elongation which is
orthogonal to the mean magnetic field. This result is to be compared in further works to
the abundant literature on the relative orientation between magnetic fields and structures
traced by interstellar dust (for a review, see [189]).

The reference angle found for ‖ data set is well defined and approximately equal to
π/4 for all scales while the anisotropy levels are close to zero. These values of θref,1

are surprising because we were not expecting any anisotropy for these data sets. By
examining the RWST statistics separately for each map, for each of the corresponding
data sets, we found out that these surprising values correspond to an intermittent rise
of the anisotropy level that appears in a few consecutive snapshots of the simulation. In
this case where the level and direction of anisotropy are not coherent over snapshots, the
mean coefficient gives an incomplete view of the anisotropic properties of the simulation.
Notably, even with significant levels of anisotropy per map, if the reference angles are
incoherent between the maps, we expect the mean level of anisotropy to be small. We
found out that this is what happens for the p⊥ data set, where Ŝaniso

1 coefficients are
relatively small while θref,1 coefficients clearly deviate from zero.

III.3.3 Second order coefficients and non-Gaussianity of the data

R[Q̃ + iŨ ] maps are Gaussian approximations of Q̃ + iŨ maps, and we have already
exhibited differences between these data sets in their first order RWST coefficients in
Sect. III.3.1. Similarly, second order RWST coefficients show remarkable differences that
highlight the non-Gaussianity of the Q̃⊥+ iŨ⊥ and Q̃‖+ iŨ‖ data sets. The two dominant
second order RWST coefficients Ŝiso,1

2 and Ŝiso,2
2 presented in Fig. III.15 display clearly

distinct patterns between the original data sets and the randomized ones on the example
of the ⊥ data sets. First, Ŝiso,1

2 and Ŝiso,2
2 coefficients are globally smaller for the R[Q̃+iŨ ]

data sets, which is in line with what we had foreseen in Sect. III.3.1. In addition, Ŝiso,1
2

coefficients for R[Q̃+ iŨ ] show a scale invariance property: Ŝiso,1
2 coefficients only depend

on the difference j2 − j1. We point out that these scale invariant patterns are signatures
of self-similar Gaussian processes [174] and have already been observed for fractional
Brownian motions processes in [167].

Ŝiso,2
2 coefficients also show two distinct trends: the coefficients quickly tend to zero

when j2 − j1 increases for R[Q̃+ iŨ ] while coefficients tend to strictly positive values for
the largest j2 − j1 values for non randomized data sets Q̃+ iŨ . This result is related to
the filamentary structure of the non randomized maps, because a filamentary structure
involves a modulation of the WST coefficients as a function of the angle difference θ2−θ1.
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R[Q̃⊥ + iŨ⊥]
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Fig. III.15 Ŝiso,1
2 (j1, j2) (left) and Ŝiso,2

2 (j1, j2) (right) RWST coefficients for the
Q̃⊥+ iŨ⊥ and R[Q̃⊥+ iŨ⊥] data sets. Each curve corresponds to a fixed j1 value
with j2 varying from j1 + 1 to J − 1 = 6. For j1 = J − 2, the curve is reduced
to a single dot on the figure.
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2 (j1, j2) (bottom row) RWST coef-
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corresponds to a fixed j1 value with j2 varying from j1 + 1 to J − 1 = 6. For
j1 = J − 2, the curve is reduced to a single dot on the figure.
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Fig. III.17 Ŝlat,1
1 (j1) (left column), Ŝlat,2

1 (j1) (middle column) and Ŝiso,3
2 (j1, j2)

(right column) RWST coefficients for the Q̃⊥ + iŨ⊥ data set. In the Ŝiso,3
2 plot,

each curve corresponds to a fixed j1 value while j2 ranges from j1+1 to J−1 = 6.
For j1 = J − 2, the curve is reduced to a single dot on the figure.

We see the same trend in Fig. III.16 for the Ŝiso,2
2 coefficients of the other non randomized

data sets which all present filamentary structures. Additionally, for all data sets and fixed
j1 values, Ŝiso,2

2 coefficients decrease as a function of j2. We also expect a signal due to
the imprint of the wavelets in the Ŝiso,2

2 coefficients that would increase their values when
j2 is close to j1 + 1.

We see in Fig. III.15 that the differences between the Q̃⊥ + iŨ⊥ data set and its
randomized counterpart decrease for the highest j1 values. Here again, this shows that
the non-Gaussianity of Q̃+ iŨ maps decreases at large scales. This is consistent with
what we have already pointed out in Sect. III.3.1 for Ŝiso

1 coefficients and we interpret
this trend similarly.

Second order anisotropic coefficients Ŝaniso,1
2 , Ŝaniso,2

2 , and θref,2 essentially show con-
sistent results with first order anisotropic coefficients both in terms of amplitude and di-
rection of anisotropy. They have generally smaller values compared to those of isotropic
coefficients Ŝiso,1

2 and Ŝiso,2
2 . We do not show these coefficients here as we do not discuss

them any further in this work.

III.3.4 Lattice terms
For completeness, we show in Fig. III.17 the additional RWST terms given for the example
of the Q̃⊥ + iŨ⊥ data set.

III.4 Conclusion and perspectives
In this chapter, we introduced the WST to analyze maps of polarized thermal emission
from interstellar dust, using 512 × 512 pixels Stokes I, Q, and U maps built from a
numerical simulation of MHD turbulence designed to reproduce typical properties of the
diffuse ISM. To alleviate the fact that Stokes Q and U rely on the definition of an arbitrary
reference frame, and to remove the zeroth-order impact of the matter distribution on their
properties and thus focus on the statistics of the magnetic field, the WST was applied to
complex Stokes maps Q̃ + iŨ that are normalized by I + P . To study the contributions
of the polarization fraction p and of the polarization angle ψ to the statistical properties
of these complex Stokes maps, we also applied the WST to the corresponding maps of p
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and exp(2iψ). We finally analyzed "Gaussianized" complex Stokes maps obtained after
phase randomization.

The WST gives a low-variance statistical description of these complex and real maps
through typically a few thousand coefficients indexed in terms of orientations and scales.
These coefficients capture the power spectra of the maps and characterize couplings be-
tween oriented scales. WST coefficients for maps of Q̃ + iŨ , p, and exp(2iψ) present a
striking regularity when taken as functions of the sole angular variables. This is very
much in line with what we observed in [167] for column density and total intensity maps,
and in fact the same functional form introduced in that paper can be used to fit the
angular dependencies of the WST coefficients of polarization maps studied here, thus ex-
tending the RWST model introduced in [167]. The RWST yields a statistical description
of polarization maps that quantifies their multiscale properties in terms of isotropic and
anisotropic contributions, all the while requiring more than one order of magnitude fewer
coefficients than the WST.

The RWST analysis allowed us to identify statistical characteristics that exhibit the
dependence of the map structure on the orientation of the mean magnetic field and quan-
tify the non-Gaussianity of data.

• The overall level of first order coefficients depends on the orientation of the mean
magnetic field with respect to the line of sight. For Q̃ + iŨ maps, Ŝiso

1 + log2(S̄0)
coefficients are larger when the mean magnetic field is in the plane of the sky, while
for exp(2iψ) maps Ŝiso

1 is larger when the mean magnetic field is along the line of
sight.

• Ŝaniso
1 coefficients quantify the statistical anisotropy of the maps. When the mean

magnetic field is parallel to the line of sight Ŝaniso
1 coefficients are negligible, while

when the mean magnetic field is in the plane of the sky they allow us to identify
the direction of anisotropy at each scale. For the MHD simulation we analyzed,
this direction is orthogonal to the direction of the mean magnetic field for both the
Q̃⊥ + iŨ⊥ and exp(2iψ)⊥ maps.

• Second order RWST coefficients clearly exhibit the non-Gaussianity of Q̃+ iŨ maps
(although this is also visible to a lesser extent in first order coefficients). While
the randomized R[Q̃+ iŨ ] data sets present characteristic properties of self-similar
Gaussian fields (Ŝiso,1

2 is a function of the scale difference j2 − j1 only, and Ŝiso,2
2

quickly decreases to zero as j2 − j1 increases), the Ŝiso,1
2 and Ŝiso,2

2 coefficients for
the corresponding Q̃ + iŨ data sets show clearly different patterns. In particular,
the strictly positive values of Ŝiso,2

2 at large j2 − j1 are interpreted as signatures of
the filamentary structure of the maps.

This chapter has demonstrated the interest of the (R)WST to describe the statistical
properties of polarization maps of the diffuse interstellar medium. However, it remains
unclear how to define statistical models based on these descriptors. Defining such models
is the object of the next chapter. This will be the opportunity to quantitatively address
the question of the comprehensiveness of the RWST statistics.
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To establish the methodology, we have worked with noise-free maps computed from
numerical simulations of MHD turbulence. One of the next steps is to apply this method-
ology to observations of polarized thermal emission from dust. To do this, we need to
learn how to handle data noise. Indeed, while signal-to-noise ratios in total intensity for
both Herschel and Planck maps are quite high, this is not the case for currently available
polarization data. Studying how data noise affects the WST coefficients demands to re-
peat the analysis of MHD simulations with noise added to the dust signal. First elements
of analysis of the impact of noise on RWST statistics will be introduced in Chapter V, as
well as a strategy to retrieve the statistics of the noise-free emission. Once this difficulty
is overcome, the RWST might be used to define a metric to compare observations with
simulations and phenomenological models. This will be a stepping stone towards a more
refined physical interpretation of the RWST coefficients. A main motivation would be to
use the RWST to characterize magnetized interstellar turbulence.

Throughout this work we chose to work with Stokes I, Q, and U maps to analyze the
polarization of dust thermal emission as astronomers do for Galactic astrophysics. In the
framework of CMB data analysis, polarization is more usually characterized through E
and B-modes as explained in Chapter I. Thus, it would be interesting to conduct similar
RWST analyses on E and B maps. This will be the first step to define a statistical model
that is consistent with observational constraints such as the E/B power asymmetry, or
the TE and TB correlations [57].





Chapter IV

Generative models from scattering-like
descriptions

In the previous chapter, we have introduced the RWST statistics to characterize the
non-Gaussian statistical properties of Stokes maps of the polarized emission of inter-
stellar dust. These statistics include an information that goes beyond power spectrum
statistics by means of a quantification of interactions between scales. They constitute a
low-dimensional and multiscale representation of the data which can be interpreted and
related to the physics of the ISM to some extent. In this chapter, we now address the
question of the comprehensiveness of these statistics to characterize dust maps, and their
ability to define a statistical model of the dust emission. The ultimate, albeit idealistic,
goal is to find the optimal set of statistical descriptors that would tell us all there is to
know about the statistical properties of the dust emission. And, at the same time, we
want to be able to define a statistical generative model based on these descriptors, from
which generating new random realizations with properties consistent with the original
dust maps would be possible.

Defining a meaningful generative model based on a set of statistical measurements
and from which realizations can be efficiently drawn is an active topic of research in data
science. Our approach will be that of [190], which makes use of microcanonical gradient
descent models to build generative models fromWST statistics. We will define in a similar
way microcanonical gradient descent models of simulated Q̃ + iŨ maps based on their
RWST statistics first, and then making use of another set of statistics called wavelet phase
harmonics (WPH), which we will also introduce. Thanks to these models, we will be able
to generate new realizations, or syntheses, from which an assessment of the exhaustiveness
of our statistics will be made possible. In practice, we will compare the synthetic maps
with the original ones by means of a set of summary statistics. Obviously, the summary
statistics will not include those used to define the model, and whatever we choose, it will
remain arbitrary to a certain extent. Here again, we emphasize that this choice should
be guided by the applications we have in mind for such models (see Sect. II.1). We will
of course also make use of visual assessments, although we will keep in mind that it is
unclear what kind of statistics human eyes are sensitive to (see e.g. [191] for a discussion).
Moreover, we will be wary of the fact that such visual assessments may greatly depend
on the way the syntheses are plotted, notably on the chosen colormap or range of the

77
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colorbar.
This chapter is organized as follows. In a first section, we introduce microcanonical

gradient descent models following [190]. Then, in a second section, we use them to define a
generative model of simulated Q̃+iŨ maps based on RWST statistics and complementary
additional constraints, before performing a first assessment of the exhaustiveness of these
statistics to characterize dust polarized emission. In a third section, we define a similar
model based on another set of statistics called wavelet phase harmonics (WPH). After
a formal introduction of the WPH, we proceed similarly to assess the exhaustiveness of
the resulting model. Finally, we conclude this chapter by summarizing our results and
outlining a few perspectives on this topic.

Computing WPH statistics has motivated the development of a Python package, called
PyWPH, allowing GPU accelerated computations of WPH statistics with PyTorch [192]
and convenient functions to manipulate the coefficients. This package is introduced in
Appendix C.1

IV.1 Microcanonical models
In this section, we introduce microcanonical models. These are guided by the principle
of maximum entropy, which states that the probability distribution that best represents
our knowledge of some system is that with largest entropy (in the sense of information
theory). Our introduction follows [190] and we refer the reader to this paper and to the
references therein for a more detailed presentation. We first define maximum entropy
microcanonical models, before discussing microcanonical gradient descent models which
were introduced in [190] as approximations of the former. While no longer of maximum
entropy, they allow to circumvent the problem of sampling in high-dimensional spaces.
We conclude this section by discussing numerical practical considerations to effectively
draw samples from microcanonical gradient descent models.

IV.1.1 Maximum entropy microcanonical models
Let us consider a random field X and x one of its realizations. We want to approximate
the distribution of X based on this single realization x. In practice, we start by making
some statistical measurements on x, which thus define a vector of statistics φ(x). While
the realization x lives in a space of dimension d, let us say Rd for the purpose of this
discussion, φ(x) typically lives in a space of lower dimension K, let us say RK . We define
microcanonical sets as ensembles of vectors of Rd whose statistics are "sufficiently close"
to that of x. Formally, we define the microcanonical set Ωε for ε > 0 as:

Ωε = {y ∈ Rd/ ‖φ(y)− φ(x)‖ ≤ ε}, (IV.1)
where ‖·‖ is some norm on the statistical space RK .

In this context, a maximum entropy microcanonical model defined on Ωε is a proba-
bility distribution µε supported in Ωε with maximal entropy. The entropy of a probability
distribution µ here refers to its differential entropy, called H(µ) and defined as:

H(µ) = −
∫
fµ(y) log fµ(y)dy, (IV.2)

1PyWPH is available at https://github.com/bregaldo/pywph.

https://github.com/bregaldo/pywph
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where fµ is the probability density function (PDF) associated to µ. Assuming that the
function φ allows Ωε to be compact, this maximum entropy distribution µε is simply the
uniform distribution on Ωε and is defined by its uniform density:

fµε(y) = 1Ωε(y)∫
Ωε dy . (IV.3)

The relevance of this kind of models directly depends on our choice of statistical
measurements, represented by the function φ, as well as on the value of ε which is a
proxy of the volume of the microcanonical set Ωε. Ideally, we want to choose φ and ε so
that typical samples of X are contained in Ωε, and conversely, typical samples of µε are
representative of those of X.

IV.1.2 Microcanonical gradient descent models
Even if we manage to define relevant φ and ε so that the corresponding maximum entropy
microcanonical model correctly approximates the distribution of X on paper, we still need
to find an efficient way to draw samples from µε. Usual strategies make use of Markov
chain Monte Carlo (MCMC) algorithms, however these algorithms reach computational
limits when the dimension of the samples d increases.2 For the applications of this thesis,
these are not an option.

Instead we will make use of approximations of maximum entropy microcanonical mod-
els, called microcanonical gradient descent models. These are still supported in a micro-
canonical set Ωε, but are no longer of maximum entropy in general. They are defined by
the transport of an initial distribution µ0 through gradient descent towards the micro-
canonical set Ωε. In practice this requires to define a loss function L : Rd → R+ that will
"guide" any sample of µ0 towards Ωε. With the following natural choice:

L(y) = ‖φ(y)− φ(x)‖2 , (IV.4)

the gradient descent algorithm defines at each iteration k a mapping ϕk(y) = y−κk∇L(y)
with∇L the gradient of L and κk the gradient step at iteration k. With y0 a sample drawn
from µ0, this algorithm builds a sequence {y0, y1, . . . , yn} such that for all k ∈ J1, nK,
yk = ϕk ◦ ϕk−1 ◦ · · · ◦ ϕ1(y0). Provided φ agrees with a certain set of conditions (see
[190]), yk will eventually belong to Ωε for a sufficiently large value of k.

Obviously, one should already be able to efficiently draw samples from µ0. In the fol-
lowing, the initial distribution µ0 will be derived from a Gaussian white noise distribution,
which is trivial to sample. It will be either directly equal to a white noise distribution, or
a simple transformation of this white noise. Note that, in the case where µ0 is a Gaussian
white noise, it is proven in [190] that typical symmetries of φ (e.g. translation or rotation
invariance) remain symmetries of the resulting model.

IV.1.3 Numerical considerations

a) Notions of optimization

Sampling a microcanonical gradient descent model thus amounts to a problem of op-
timization, that is the minimization of L : Rd → R+ starting from a given point y0.

2In general, Markov chain mixing time depends on the exponential of d [193].
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Instead of using a gradient descent algorithm to minimize this function (see e.g. [194]),
we will use the L-BFGS algorithm that is implemented in SciPy [195, 196, 197]. This has
been empirically proven more efficient in minimizing L for our applications. Even if the
mathematical properties of models defined with a L-BFGS algorithm are less clear, we
will reasonably assume that they remain quite similar to that of proper microcanonical
gradient descent models.

The L-BFGS algorithm belongs to the class of quasi-Newton methods, which are based
on Newton’s method. Where the gradient descent algorithm is an iterative algorithm
only relying on first-order approximations of L, Newton’s method relies on second-order
approximations of L. Provided L is twice differentiable at y ∈ Rd, we can write the
second-order Taylor series expansion of L about y:

L(y + h) ≈ L(y) +∇L(y)Th+ 1
2h

THL(y)h, (IV.5)

with ∇L and HL the gradient and the Hessian matrix of L, respectively, and h ∈ Rd
a sufficiently small increment (in norm). Calling yk the position of the optimizer at
iteration k, Newton’s method will compute the step hk that minimizes this expansion,
that is hk = − [HL(yk)]−1∇L(yk) (see [194]), and the position yk+1 at next iteration is
simply set to yk+1 = yk + hk. Note that Newton’s method is well defined when HL is
positive definite, otherwise the algorithm must be adapted. Nevertheless, for the purpose
of this discussion, let us remark that while a second-order method is generally more
refined than a mere first-order method, it is much more computationally expensive, and
all the more if the dimension d is large. Indeed, the Hessian matrix HL of size d × d
must be computed, stored, and inverted, which may be computationally intractable for
our applications where d is typically the number of pixels of an image of 512× 512 pixels,
meaning d = 262144. Quasi-Newton methods circumvent this issue when d becomes too
large by approximating the Hessian HL at each iteration. In particular, the L-BFGS
algorithm manages to approximate the inverse of the Hessian with a limited memory
cost based on the history of the positions and of the corresponding gradients during the
optimization [195]. We refer to [194] for a broader explanation of these optimization
techniques.

b) Automatic differentiation

Regardless of the optimization method, we will have to estimate at some point gradients
of L. This loss function will be in practice too complicated for us to derive any analytic
expression of its gradient. Thus, we will have to resort to numerical strategies. Common
finite-difference schemes would require to estimate d partial derivatives, involving at least
2d costly evaluations of L, and leading necessarily to approximate gradients. Another
more realistic alternative is that of automatic differentiation, which is a common technique
of machine learning allowing to compute exact gradients by keeping track of the sequence
of operations that are successively applied to a given y in order to compute L(y). The idea
behind that is that any complicated function will be at some point reducible to a sequence
of elementary operations (addition, subtraction, etc) or functions (exp, log, sin, cos, etc)
for which analytic derivatives do exist. By applying the chain rule to this sequence of
operations, one can automatically extract the resulting derivatives.
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Fig. IV.1 Example of a computation graph associated to the function
L(y1, y2) = 3y2

1 + 5y3
2 for automatic differentiation. The ˆ symbol refers to the

exponentiation operation.

Let us take a simple example, defining L : R2 → R as L(y1, y2) = 3y2
1 + 5y3

2. We have
trivially:

∂L
∂y1

= 6y1 and ∂L
∂y2

= 15y2
2. (IV.6)

However, with automatic differentiation, L(y1, y2) is internally described as a computation
graph such as the one depicted in Fig. IV.1, thus giving L(y1, y2) = a2(a1(y1))+b2(b1(y2)).
The application of the chain rule gives:

∂L
∂y1

= ∂L
∂a2

∂a2
∂a1

∂a1
∂y1

and ∂L
∂y2

= ∂L
∂b2

∂b2
∂b1

∂b1
∂y2

. (IV.7)

All the factors of this expression involve standard derivatives which can be automatically
and exactly computed. On this example we have:

∂L
∂a2

= 1, ∂a2
∂a1

= 3, ∂a1
∂y1

= 2y1, (IV.8)

∂L
∂b2

= 1, ∂b2
∂b1

= 5, ∂b1
∂y2

= 3y2
2. (IV.9)

Finally, by replacing the expression of these derivatives in Eq. (IV.7), we simply retrieve
the gradient of L as written in Eq. (IV.6). This illustrates how automatic differentiation
may extend to more complicated loss functions L.

In the following, we will make use of automatic differentiation to compute gradients
of L by means of the Python library PyTorch [192]. This library will also allow us to
accelerate the computations of L by employing GPUs.

IV.2 Application with the RWST
In the continuity of the last chapter, we now define microcanonical gradient descent
models of simulated Q̃+iŨ maps based on their RWST statistics. The immediate interest
is twofold: 1) it allows us to assess the exhaustiveness of RWST statistics to characterize
the statistical properties of dust polarization maps, 2) it provides a way to generate new
realizations with interesting statistical similarities with the original maps. This last point
is of strong interest for data augmentation, which is all the more valuable when we know
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how costly a MHD simulation can be, or for producing realistic foregrounds for component
separation methods. The results of this section are directly taken from [168]. Note that
this approach follows what has been done for dust total intensity in [167].

IV.2.1 Generation of synthetic polarization maps

If synthetic total intensity maps generated from a RWST description have already been
produced in [167], here I extend and improve this procedure for complex polarization
maps. In the following, we generate a synthetic map based on the RWST statistics of the
Q̃‖ + iŨ‖ data set, which was introduced in the previous chapter.

The generation of synthetic maps based on microcanonical gradient descent models is
an iterative process consisting in the minimization of the loss function L in pixel space.
With 512 × 512 pixels maps, this optimization problem is thus defined in practice in a
complex space of dimension d = 5122. We start from a realization of a complex Gaussian
white noise map x0 = Q̃0 + iŨ0, and successive maps {xk = Q̃k + iŨk} are built through
the minimization of L with a L-BFGS algorithm [195, 196]. We employ a modified version
of Kymatio to compute WST statistics of complex maps with PyTorch, allowing GPU
acceleration and automatic differentiation [198, 192].

a) Initial and reference maps

First, we pick one specific map xr = Q̃r + iŨ r from the 14 maps of the Q̃‖ + iŨ‖ data
set, to serve as a reference for comparison with the synthetic map. The initial map x0
is drawn from a complex Gaussian white noise with same mean and standard deviation
as xr. We recall that our WST and RWST analyses described in the previous chapter
was restricted to the range of scales j ∈ J0, J − 1K, consequently, we have no statistical
information on scales larger than λ ≈ 171 pixels (see Table III.2) nor on their couplings
with smaller scales. Thus, we replace the largest scales of x0 with those of xr to address
this gap in a deterministic way3. Formally, denoting F [x0] the Fourier transform of x0,
we modify x0 by setting:

F [x0](k) = F [xr](k) for |k| < kmin, (IV.10)

where kmin is the wavenumber corresponding to the largest scale probed by the WST,
that is kmin ≈ 2π/171 ≈ 0.037 pixel−1. In practice, 25 Fourier modes out of 5122 are
modified by this procedure. To illustrate, we show in Fig. IV.5 the resulting Q0 map (top
left map). Even if in our case this value of kmin is related to an ad hoc modeling decision
(J value), we recall that statistical approaches are not always relevant at all scales for
the analysis of the diffuse ISM (see Sect. II.1 for a discussion). Moreover, we have noted
that the WST of an image does not adequately characterize its one-point statistics. For
this reason, in the following, we impose additional constraints on one-point moments of
the synthetic map so that they match those of xr.

3Note that this deterministic strategy cannot account for the couplings between the largest scales with
smaller ones.
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b) Loss function

We define the loss function L of a complex image x = Q̃+ iŨ as follows:

L[x] = LWST[x] + α
(
Lone−point[Q̃] + Lone−point[Ũ ]

)
, (IV.11)

with LWST[x] the loss function constraining the WST coefficients of x, Lone−point[Q̃] (re-
spectively Lone−point[Ũ ]) that constraining a few one-point moments of Q̃ (respectively Ũ),
and α a weighting coefficient balancing the importance of these two types of constraints.
More specifically we set:

LWST[x] = 1
N

(S0[x]− St
0

)2
+
∑
j1,θ1

(
S1(j1, θ1)[x]− St

1(j1, θ1)
)2

+
∑

j1,j2,θ1,θ2

(
S2(j1, θ2, j2, θ2)[x]− St

2(j1, θ1, j2, θ2)
)2
 , (IV.12)

where the "t" superscript refers to the target WST coefficients that the synthetic map
should have, and N is the total number of WST coefficients. In our case (J = 7 and
L = 8) we recall that we have N = 2801. These target WST coefficients are computed
from the RWST coefficients derived from a given data set of Q̃+ iŨ maps (of which xr

is part) using the RWST model defined in Eqs. (III.20) and (III.21). We see on this
loss function that none of the WST coefficients is privileged and that we do not weigh
the differences of WST coefficients by any uncertainty on the target coefficients. This is
certainly something that can be improved in a future work on WST syntheses. We finally
define:

Lone−point[Q̃] = 1
3

(M2[Q̃]
M2[Q̃r]

− 1
)2

+
(
M3[Q̃]−M3[Q̃r]

)2
+
(
M4[Q̃]−M4[Q̃r]

)2
 ,

(IV.13)
where M2[Q̃] = 〈

(
Q̃− 〈Q̃〉

)2
〉 is the variance of the distribution of pixels values of Q̃,

M3[Q̃] = 〈
(
Q̃− 〈Q̃〉

)3
〉/M2[Q̃]3/2 is its skewness, and M4[Q̃] = 〈

(
Q̃− 〈Q̃〉

)4
〉/M2[Q̃]2

is its kurtosis.

c) Synthesis from the Q̃‖ + iŨ‖ data set

We generate a synthetic map using the Q̃‖ + iŨ‖ RWST description as a target but note
that equivalent results for the Q̃⊥+iŨ⊥ RWST description are also provided in [168]. The
optimization algorithm stops when the loss function or its projected gradient stagnates
between two consecutive iterations. In practice, we choose α = 10−5 and the algorithm
stops when |L[xk]− L[xk+1]| < 10−7. These numerical values have been adjusted em-
pirically to guarantee satisfactory visual and quantitative results.4 This optimization
requires 12 evaluations of the loss function (see Fig. IV.2 for a plot of the evolution of

4Note that these numerical values are related to the Q̃‖+ iŨ‖ data set, and might need to be modified
for other data. Moreover, they are given for a normalized Q̃‖ + iŨ‖ data set, i.e., with maps of unit
variance on average.
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Fig. IV.2 Evolution of the loss function during the generation of the Q̃‖ + iŨ‖
map shown in Fig. IV.3.
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Fig. IV.3 Synthesis of a Q̃‖ + iŨ‖ map (right column, with Q̃‖ on top and Ũ‖
on bottom) built from RWST statistics and additional constraints on large-scale
components and on a few one-point moments of Q̃ and Ũ maps, to be consistent
with those of a reference map (left column). The square plotted in black dashed
lines on the top right map delimits the region shown in Fig. IV.4.
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Fig. IV.4 Zoom on the Q̃‖ synthetic map shown in Fig. IV.3 before (left) and
after (right) the filtering of modes beyond the Nyquist disc. This filter allows to
mitigate checkerboard patterns visible in the left panel at pixel scale.

the loss), taking less than 30 seconds on a Quadro P2000 GPU with 4 Gb of memory.
The statistical coefficients of the resulting synthesis match the target coefficients with a
relative error of less than one percent on average. Once the optimization is done, we post-
process the resulting map by filtering modes beyond the Nyquist disc (that is those with a
wavenumber higher than the one dimensional Nyquist wavenumber kN = π pixels−1 ; see
Appendix A) in order to avoid numerical artifacts such as checkerboard patterns shown
in Fig. IV.4. Indeed, the WST relies on a bank of Morlet wavelets that does not properly
cover frequencies beyond the Nyquist disc, which results in a total loss function L that
poorly constrains these modes (see Appendix B). Figure IV.3 shows the final synthetic
Q̃‖+ iŨ‖ map (right column) next to its reference map (left column). The overall appear-
ance of the synthetic map is satisfactory. The largest scales are roughly consistent with
those of the reference maps5, and we also see at intermediate and small scales, which are
the truly synthetic scales, consistent filamentary patterns and dynamic ranges between
the synthetic and reference maps. Finally, we show in Fig. IV.5 the sequence of maps
Q̃k computed over the iterations of the optimization. Note that the final synthetic map,
corresponding to iteration k = 12, is not reproduced in this figure as it is already shown
in Fig. IV.3. The initial modified white noise (k = 0 map) acts as a random seed for the
structures of the final synthesis. Similar results are obtained for the maps Ũk.

IV.2.2 One-point and two-point statistics of synthetic maps
By construction, the synthetic map we built has approximately the same WST statistics
as prescribed by the Q̃‖ + iŨ‖ RWST description, as well as similar large scales and one-
point moments as the reference map. We may ask whether elementary one-point and
two-point statistics are fully consistent with those of the reference map.

Figure IV.6 shows the power spectra of Q̃, Ũ , and Q̃+ iŨ up to the one dimensional
Nyquist wavenumber kN for both the reference maps and the syntheses shown in Fig. IV.3.
The power spectra are computed by binning the squared amplitudes of Fourier modes with
respect to the modulus of the corresponding wavenumber k. We use a regular binning in

5Since the WST constraints leave the largest scales of x0 unchanged, this shows that the impact of the
one-point moments constraints on these scales is minor.
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Fig. IV.5 Sequence of maps Qk computed for the generation of the Q̃‖ + iŨ‖
map shown in Fig. IV.3.



IV.2 Application with the RWST 87

10−2 10−1 100

k [pixels−1]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

P
S

[Q̃
]

Reference

Synthetic

10−2 10−1 100

k [pixels−1]

P
S

[Ũ
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Fig. IV.6 Power spectra of the synthetic Q̃‖ + iŨ‖ map shown in Fig. IV.3,
compared to those of the reference map, for Q̃, Ũ , and Q̃ + iŨ (left, middle,
and right, respectively). The vertical dashed lines mark the wavelet central
wavenumbers corresponding to the scale indices j = 0, . . . , J − 1 (from right to
left).
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p(
|Q̃

+
iŨ
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Fig. IV.7 One-point distribution functions of the synthetic Q̃‖+iŨ‖ map shown
in Fig. IV.3, compared to those of the reference map, for Q̃, Ũ , and |Q̃ + iŨ |
(left, middle, and right, respectively).

k and the estimations of the power spectra are computed as the means for each bin (see
Sect. A.2.2 for additional details).6 We also represent standard deviations of the mean
per bin. We see that the power spectra as well as their standard deviations are in good
agreement for the three variables Q̃, Ũ , and Q̃ + iŨ for all scales except the smallest
ones. These discrepancies at small scales take the form of a lack followed by an excess of
power in the syntheses for wavenumbers approaching kN . We interpret this as the result
of poorly constrained modes close to kN in the optimization process. It is not surprising
to reproduce the power spectrum of Q̃ + iŨ maps because the S̄1 and S̄2 coefficients
constrain the power spectrum of Q̃+ iŨ (see discussion in Sect. III.1.2). However, we also
correctly reproduce the power spectra of Q̃ and Ũ taken separately, for which there was
no direct constraint. Still, we did not investigate cases where Q̃ and Ũ have very different
power spectra.

6We point out that the chosen estimator of the power spectrum, leads by construction to
PS[Q̃+ iŨ ] = PS[Q̃] + PS[Ũ ]. This is a direct consequence of the fact that ̂̃Q(k) ̂̃U∗(k) = ̂̃Q∗(−k) ̂̃U(−k)
for any mode k.
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In Fig. IV.7, we compare the one-point distribution functions of the reference maps
and the synthetic maps for Q̃, Ũ , and |Q̃ + iŨ |. These are in fairly good agreement for
all the variables, with particularly striking match for Ũ . We also reproduce quite well
the tails of these distributions, this must be the consequence of the combined constraints
on WST coefficients and one-point moments. Note that one could surely enhance the
agreement between the reference and synthetic maps by taking into account higher order
moments in the Lone−point loss functions.

We recall that in this work the RWST statistics comprise 127 coefficients only (see
Sect. III.2.4). Adding to that the largest scales that were set in a deterministic way as
well as the constraints on the one-point moments of Q̃ and Ũ maps, we end up with a
total of 158 coefficients to generate 512×512 complex Q̃+iŨ maps that are in good visual
agreement with the maps of the original data set and successfully reproduce their one-
point and two-point statistics. This shows that microcanonical gradient descent models
derived from RWST statistics constitute a promising avenue to model polarization maps
of the dust emission, needing only a few hundred statistical coefficients, which can be
derived from a single map or from a collection of maps as it was the case here.

IV.3 Application with the WPH
In this section, we define microcanonical gradient descent models of the same data but
making use of another set of statistics called wavelet phase harmonics (WPH). The WPH
statistics were introduced in [5] to describe phase dependencies across scales with a math-
ematical formalism inspired by the properties of CNNs. These statistics allow to char-
acterize coherent structures in non-Gaussian random fields, and their ability to define
maximum entropy models was first studied in [6]. In [199] models of simulated data of
the large-scale structure of the Universe based on their WPH statistics have been intro-
duced, and it was demonstrated quantitatively that the synthetic maps reproduce well
the power spectrum, bispectrum, and Minkowski functionals of the input data. We follow
in the footsteps of these works to define statistical models of dust emission polarization
maps.

After a formal introduction to the WPH statistics, we define microcanonical gradient
descent models derived from the WPH statistics of the same simulated Q̃ + iŨ maps
as before. Then we assess how the statistics of synthetic maps compare to those of the
original ones, using the results of the previous section as a benchmark.

The computations of WPH statistics are made with PyWPH, a Python package whose
design was motivated by this work and that of the following chapter. We refer to Ap-
pendix C for a presentation of the package.

IV.3.1 The wavelet phase harmonics

We introduce the WPH statistics from a practical perspective. We use them as in-
terpretable low-dimensional statistics allowing to describe non-Gaussian random fields.
However, the reach of this set of statistics is wider, as they were originally introduced in
data science to give a complementary mathematical view of key properties of CNNs [5],
in line with previous ideas that motivated the definition of the WST [166]. In particular,
the phase harmonic operator, which will be defined below, is closely related to rectifier
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Fig. IV.8 Real part (left) and imaginary part (right) of a 512 × 512 bump-
steerable wavelet ψ6,π/4. The wavelet is centered on the middle of the map for a
better visualization.

units of CNNs, and plays a central role in efficiently capturing phase alignments between
different scales [5].

Note that this introduction is partly inspired from that of [200]. As usual, we call X
a given random field and x one of its realizations. We also assume X to be statistically
homogeneous. The WPH statistics of x correspond to estimates of the WPH moments
of X. However, similarly to [199], we complement these statistics by estimates of scaling
moments of X. To simplify, in the following, the WPH statistics will thus refer to both
the estimates of the WPH and scaling moments. These are defined in the following.

a) Bump-steerable wavelets

Like the WST, the WPH moments rely on the wavelet transform. We recall that with
{ψξ1 , . . . , ψξN }, a bank of wavelets labeled by their central wavevectors ξi, the wavelet
transform of X corresponds to the set {X?ψξ1 , . . . , X ?ψξN }. These convolutions amount
to a local bandpass filtering ofX on the scales probed by each of the wavelets. Contrary to
Sect. III.1.2, we employ bump-steerable wavelets instead of Morlet wavelets following [5].
The mother bump-steerable wavelet is defined in Fourier space as follows:

ψ̂(k) = exp
(
−(k − ξ0)2

ξ2
0 − (k − ξ0)2

)
· 1[0,2ξ0](k)× cosL−1(arg(k)) · 1[0,π/2](| arg(k)|), (IV.14)

with k = ‖k‖, 1A(x) the indicator function that returns 1 if x ∈ A and 0 otherwise,
and ξ0 = 0.85π the central wavenumber of the mother wavelet. The bank of wavelets is
here again built from dilations and rotations of the mother wavelet ψ, and we consider
J dilation indices j ranging from 0 to J − 1, and L or 2L rotation angles of the form
{θk = kπ/L} depending on whether the target field X is real or complex-valued, respec-
tively. We denote by ξj,θ = 2−jξ0uθ with uθ = cos θ ux + sin θ uy the central wavevector
of each wavelet. These wavelets cover most of Fourier space with their respective band-
passes (or Fourier half-space for real-valued X). We refer to Appendix B for additional
details on bump-steerable wavelets and on the wavelet transform.

In this study, we work with 512 × 512 maps and choose J = 7 and L = 8. We show
in Fig. IV.8 one example wavelet from the bank.
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b) WPH moments

The WPH moments of X are covariances of the phase harmonics of the wavelet transform
of X, that is, for a statistically homogeneous X, these are defined as follows:

Cξi,pi,ξj ,pj (τ ) = Cov
([
X ? ψξi(r)

]pi
,
[
X ? ψξj (r + τ )

]pj)
, (IV.15)

with z 7→ [z]p = |z| · eip arg(z) the phase harmonic operator7. When applied to a
complex z, the phase harmonic operator preserves the modulus of z but multiplies its
phase by a factor p. It is a Lipschitz continuous operator with for all z, z′ ∈ C2,
|[z]p − [z′]p| ≤ max(|p|, 1)|z − z′| [5]. This prevents uncontrolled amplifications, and leads
to estimators with reduced variance compared to equivalent moments where the phase
harmonic operator would be replaced by a standard exponentiation [6].

These WPH moments are able to capture interactions between different scales of X
thanks to the phase harmonic operator. Indeed, the covariance between X ? ψξi and
X ? ψξj vanishes when the wavelets ψξi and ψξj have nonintersecting bandpasses, and
it is otherwise a function of the power spectrum of X and of the bandpasses of the
wavelets [6, 199]. This is a consequence of the following relation (see [6] for a proof):

Cov
[
X ? ψξi(r), X ? ψξj (r + τ )

]
=
∫
SX(k)ψ̂ξi(k)ψ̂∗ξj (k)e−ik·τdk, (IV.16)

with SX the power spectrum of X. With proper pi and pj values, the phase harmonic
operator can make [X ? ψξi ]pi and [X ? ψξj ]pj comparable in the sense that they share
common spatial frequencies, allowing an extraction of high-order information through
their covariance.

To illustrate the importance of the phase harmonic operator to measure phase align-
ment between scales, we show in Fig. IV.9 how the amplitude and phase maps of x ? ψξ1

and x ? ψξ2 compare for two different wavevectors ξ1 and ξ2, with x a map from the
Q̃‖+ iŨ‖ data set (left maps, with Q̃ on top and Ũ on bottom). We choose ξ1 = ξ3,0 and
ξ2 = ξ4,0, so that ψξ2 and ψξ2 probe similar orientations but different scales, with ψξ2

probing scales that are twice larger than those probed by ψξ1 . The amplitude maps show
local variations of the signal x filtered at different scales, with naturally coarser variations
in |x ?ψξ2 | than in |x ?ψξ1 |. The phase maps present almost periodic oscillations tending
to be vertically aligned. However these maps are incoherent in the sense that the aver-
age frequency of oscillation of the phase map arg(x ? ψξ1) is approximately twice that of
arg(x?ψξ2). The phase harmonic operator with k = 2 transforms arg(x?ψξ2) into a phase
map (bottom right map) that is much more coherent with arg(x ? ψξ1). Consequently,
the sample covariance of these maps does not vanish and quantifies the phase alignment
between x ? ψξ1 and x ? ψξ2 .

The covariances depend on the variable τ which introduces a relative shift between
X ?ψξ1 and X ?ψξ1 . Inspired by [199], we discretize this τ variable by introducing polar
coordinates (n, α) defined relatively to the central wavevector associated to each wavelet.
Practically, for each wavelet ψj,θ, we introduce a grid of τn,α vectors defined as

τn,α = 3n2juθ+α, (IV.17)
7These moments do not depend on the r variable because of the homogeneity of X.
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Amplitude Phase

Fig. IV.9 Comparison between the amplitude and phase maps of x ? ψξ for
x a complex image shown on the left (real part is above, and imaginary part
is below) and two different wavelets ψ3,0 and ψ4,0. The action of the phase
harmonic operator is shown on the phase map of x ? ψ4,0.

Fig. IV.10 Discrete grid of translation vectors τn,α defined relatively to a
wavelet ψj,θ. On this example, we choose θ = π

4 and show grid points up to
n = 2 with A = 4.
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with n = J0,∆nK and α ∈ {αk = kπ
A , k ∈ J0, 2A − 1K}, where ∆n and A are two integers

playing similar roles to J and L but for n and α variables instead of j and θ, respectively
(see Fig. IV.10 for an illustration). To avoid a redundancy in the information contained
in the coefficients, we discard the translations for which n > min(J − 1− j,∆n) similarly
to the implementation of [199].

In the following, we choose ∆n = 2 and A = 4, guided by the results of [199]. Note
that contrary to [199], α takes values in [0, 2π) instead of (−π/2, π/2]. This choice allows
to restrict our wavelet bank to wavelets with θ ∈ [0, π) only when describing real-valued
data as explained below.

c) Choice of a subset of WPH moments

In practice, we cannot reasonably estimate the whole set of WPH moments for every pos-
sible choice of ξ1, ξ2, p1, p2, and τn,α variables as this would be obviously computationally
excessive and not necessarily useful. Indeed, not all the moments are equally informative,
some of them may vanish by construction, or there may be a form of redundancy due to
immediate symmetries.

[199] identified a relevant set of WPH moments to build models of real-valued simu-
lated data of the large-scale structure of the Universe8. In the present work, we define
WPH statistics that are directly inspired from this work while being slightly different.
Our choice of subset is made more optimal to describe real-valued data and extended
to characterize complex-valued data. We will consider in the following five categories of
moments defined as follows:

• the S(1,1) moments, of the form Cξ,1,ξ,1(τ ) = Cov [X ? ψξ(r), X ? ψξ(r + τ )], at ev-
ery τn,α. They measure weighted averages of the power spectrum over the bandpass
of ψξ (see Eq. (IV.16)).

• the S(0,0) moments, of the form Cξ,0,ξ,0(τ ) = Cov [|X ? ψξ(r)|, |X ? ψξ(r + τ )|], at
every τn,α. They capture information related to the sparsity of the data in the
bandpass of ψξ.

• the S(0,1) moments, of the form Cξ,0,ξ,1(τ ) = Cov [|X ? ψξ(r)|, X ? ψξ(r + τ )], at
τ = 0 only. They capture information related to the couplings between the scales
included in the same bandpass.

• the C(0,1) moments, of the form Cξ1,0,ξ2,1(τ ) = Cov [|X ? ψξ1(r)|, X ? ψξ2(r + τ )],
considering 0 ≤ j1 < j2 ≤ J − 1, at every τn,α when θ1 = θ2 and at τ = 0 only when
θ1 6= θ2. They capture information related to the correlation between local levels of
oscillation for the scales in the bandpasses associated to ψξ1 and ψξ2 .

• the Cphase moments, of the form Cξ1,1,ξ2,p2(τ ) = Cov [X ? ψξ1(r), [X ? ψξ2(r + τ )]p2 ]
with p2 = ξ1/ξ2 > 1, considering 0 ≤ j1 < j2 ≤ J − 1 and θ1 = θ2, at every τn,α.
They capture information related to the statistical phase alignment of oscillations
between the scales in the bandpasses associated to ψξ1 and ψξ2 .

8These data are highly non-Gaussian at late times and at scales smaller than 100 h−1Mpc.
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We identify in the following basic symmetries with respect to the angular variables
that will allow us to define optimal ranges for the angular variables, avoiding redundancy
in the statistical content of the WPH statistics. We denote, e.g., by S(1,1)(j, θ, n, α) the
moment Cξj,θ,1,ξj,θ,1(τn,α), and use similar notations for the other categories of moments.

For a real-valued statistically homogeneous random field X, and for a choice of
wavelets satisfying the symmetry ψj,θ+π = ψj,θ (valid when ψ̂(k) ∈ R for all k, which is
notably the case of bump-steerable wavelets ; see Appendix B), we can derive the following
list of symmetries:

S(1,1)(j, θ + π, n, α) = S(1,1)(j, θ, n, α), (IV.18)
S(1,1)(j, θ, n, α+ π) = S(1,1)(j, θ, n, α), (IV.19)
S(0,0)(j, θ + π, n, α) = S(0,0)(j, θ, n, α), (IV.20)
S(0,0)(j, θ, n, α+ π) = S(0,0)(j, θ, n, α), (IV.21)

S(0,1)(j, θ + π) = S(0,1)(j, θ), (IV.22)
C(0,1)(j1, θ1 + π, j2, θ2, n, α) = C(0,1)(j1, θ1, j2, θ2, n, α), (IV.23)
C(0,1)(j1, θ1, j2, θ2 + π, n, α) = C(0,1)(j1, θ1, j2, θ2, n, α+ π), (IV.24)
C(0,1)(j1, θ1, j2, θ2, n, α+ π) = C(0,1)(j1, θ1 + π, j2, θ2 + π, n, α), (IV.25)

Cphase(j1, θ + π, j2, θ + π, n, α) = Cphase(j1, θ, j2, θ, n, α+ π). (IV.26)

In the case of a complex-valued statistically homogeneous random field X, however, only
Eqs. (IV.19) and (IV.21) hold in general.

Proofs of these relations essentially stem from the fact that [X ? ψj,θ+π]p =
[
X ? ψj,θ

]p
for any p ∈ R. This is the consequence of the commutativity of the complex conjugation
with the phase harmonic and convolution operations. Note that due to the peculiar
definition of translation vectors τn,α, which are defined relatively to a given wavelet ψj,θ
(see Eq. (IV.17)), we have [X ? ψj,θ+π]p (r + τn,α) =

[
X ? ψj,θ

]p
(r − τn,α), where the first

τn,α vector is implicitly associated to ψj,θ+π and the second one to ψj,θ.
For example, let us prove Eq. (IV.25). For X a real-valued random field, we have

obviously X = X, and:

C(0,1)(j1, θ1, j2, θ2, n, α+ π) = Cov [|X ? ψj1,θ1(r)|, X ? ψj2,θ2(r + τn,α+π)] (IV.27)
= Cov [|X ? ψj1,θ1(r)|, X ? ψj2,θ2(r − τn,α)] (IV.28)

= Cov
[
|X ? ψj1,θ1(r)|, X ? ψj2,θ2+π(r + τn,α)

]
(IV.29)

= Cov
[
|X ? ψj1,θ1+π(r)|, X ? ψj2,θ2+π(r + τn,α)

]
(IV.30)

= Cov [|X ? ψj1,θ1+π(r)|, X ? ψj2,θ2+π(r + τn,α)] (IV.31)
= C(0,1)(j1, θ1 + π, j2, θ2 + π, n, α). (IV.32)

Proofs of the other symmetries are analogous.
Coefficients that are either equal or related by a complex conjugation operation are

said to be redundant. The previous relations show that, in order to avoid redundancy, for
real-valued fields, it is sufficient to consider wavelets with θ ∈ [0, π), while for complex-
valued fields, we will need to use the full set of wavelets with θ ∈ [0, 2π). Moreover, to
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S(1,1) S(0,0) S(0,1) C(0,1) Cphase Lj,p Total Ratio (%)

real field 408 408 56 2944 1768 16 5600 ∼ 2

complex field 816 816 112 8576 3536 32 13888 ∼ 5

Table IV.1 – Number of statistical coefficients per class of moments for the parameters
used in this work in the cases of both real and complex-valued data. The last column
gives the ratio of the total number of coefficients to the number of pixels in a 512 × 512
pixels image.

avoid further redundancy, for the S(1,1) and S(0,0) moments, it is sufficient to consider
τn,α vectors with α ∈ [0, π) only for both real and complex-valued fields.

We give in Table IV.1 the resulting number of WPH coefficients for the parameters
used in this work (J = 7, L = 8, ∆n = 2, A = 4) in the cases of both real and complex-
valued data. We also give for information the ratio between these numbers of coefficients
and the number of pixels in a 512× 512 pixels image.

Note that for complex-valued random fields X, one could similarly define pseudo-
covariance WPH moments (see Appendix A for a definition of pseudo-covariance). How-
ever similar symmetry relations show that these are already contained in regular covari-
ance WPH moments for all categories of moments except Cphase moments. To simplify,
we will simply ignore pseudo-covariance analogs of Cphase moments for complex-valued
random fields.

d) Scaling moments

Similarly to [199], we complement the WPH statistics with a small number of coefficients,
the estimates of the so-called scaling moments Lj,p that better constrain the largest scales
that are not probed by the WPH moments. These moments are constructed from a bank
of scaling functions {ϕj}0≤j≤J−1, which correspond to dilations of an isotropic Gaussian
filter ϕ defined in Fourier space by the following:

ϕ̂(k) = exp
(
−||k||

2

2σ2

)
, (IV.33)

with σ = 0.496 × 2−0.55ξ0 (following [6]). For a real-valued random field X, the scaling
moments of X are as follows:

Lj,0 = Cov [|X ? ϕj |, |X ? ϕj |] , (IV.34)
Lj,p = Cov [(X ? ϕj)p , (X ? ϕj)p] (for p > 0). (IV.35)

In the case of a complex-valued random field X, we consider the previous scaling moments
for both Re(X) and Im(X) taken separately.

In this work, we consider p ∈ {0, 1, 2, 3} and 2 ≤ j ≤ J − 2 following [199]. The corre-
sponding number of coefficients associated to these moments is also given in Table IV.1.
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e) Normalized estimates

We define normalized estimates of the WPH and scaling moments of X based on a single
realization x similarly to [6] and [199]. The normalization of these estimates, which has
been shown to speed up minimization when sampling from a microcanonical gradient
descent model [6], depends on a reference map x0.

For a map x, the normalized estimates of the WPH moments Cξ1,p1,ξ2,p2(τ ) of X,
called C̃ξ1,p1,ξ2,p2(τ ) are defined as follows:

C̃ξ1,p1,ξ2,p2(τ ) =
〈
x(ξ1,p1) (r)x(ξ2,p2) (r + τ )

〉√〈
|x(ξ1,p1)

0 |2
〉〈
|x(ξ2,p2)

0 |2
〉 , (IV.36)

where the brackets stand for a spatial mean on r, and x(ξ,p) = [x ? ψξ]p −
〈
[x0 ? ψξ)]p

〉
.

Note that the definition of x(ξ,p) already depends on x0.
Similarly, we define the normalized estimates of the scaling moments of X derived

from x by:

L̃j,p = 〈|x
(j,p)|2〉

〈|x(j,p)
0 |2〉

, (IV.37)

with

x(j,0) = |(x− 〈x0〉) ? ϕj | − 〈|(x− 〈x0〉) ? ϕj |〉, (IV.38)
x(j,p) = ((x− 〈x0〉) ? ϕj)p − 〈((x− 〈x0〉) ? ϕj)p〉 (for p > 0). (IV.39)

This definition is similar to that of the implementation of [199].

IV.3.2 Generative models of synthetic polarization maps

We produce a synthetic Q̃ + iŨ map in a completely analogous way to the procedure
described in Sect. IV.2.1 but here making use of WPH statistics instead of RWST statis-
tics. We show here results based on the modeling of the Q̃‖ + iŨ‖ data set for better
comparison with the results of Sect. IV.2.

This procedure minimizes the following loss L:

L[x] =
∥∥∥φ(x)− φt

∥∥∥2
, (IV.40)

where φ is the operator that computes the WPH statistics of a complex map x as intro-
duced in Sect. IV.3.1, φt is a set of target WPH statistics, and ‖·‖ denotes the Euclidean
norm in the WPH statistical space. The WPH statistics of x correspond to a vector of
complex numbers comprising the normalized estimates of the WPH and scaling moments
of x defined in Eqs. (IV.36) and (IV.37). The reference map involved in the normaliza-
tion is chosen to be the map of the Q̃‖+ iŨ‖ data set that was already taken as reference
in Sect. IV.2. The target statistics φt are averages of the WPH statistics computed for
each map of the Q̃‖ + iŨ‖ data set. The normalization of the estimates involved in the
derivation of φt is kept consistent with that of φ(x).
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Fig. IV.11 Same as Fig. IV.3 but with a model based on the WPH statistics
of the Q̃‖ + iŨ‖ data set. The synthetic map is shown on the right, while the
reference map is shown on the left.

The optimization here again starts with a modified realization of a Gaussian white
noise, whose largest scales are replaced by those of the reference map as explained in
Sect. IV.2.1. In 50 iterations, taking less than 4 minutes on a Tesla V100S GPU with
32 Gb of memory, the loss reaches approximate convergence. We show in Fig. IV.11 the
resulting synthesis next to the reference map. This figure is to be compared to Fig. IV.3.
Visually, the largest scales between the reference and synthetic maps are consistent, which
was obviously expected. The typical filamentary structures of the Q̃‖+iŨ‖ data set seems
to be very well reproduced in the synthesis. However, the density of sharp variations in the
synthetic map appears slightly higher than that of the reference map, which by opposition
seems more regular, although these differences remain quite subtle and would deserve
further quantification. Note that contrary to the synthesis that is derived from RWST
measurements, this synthesis does not have any annoying visible numerical artifact such
as the checkerboard patterns identified in Fig. IV.4. Consequently, we do not perform
any post-processing step as in Sect. IV.2.

IV.3.3 Statistical assessment and comparison with RWST-based models
The quantitative assessment of the quality of this synthesis is similar to that of Sect. IV.2.
We show in Figs. IV.12 and IV.13 comparisons of the power spectra and distributions of
the pixel values between the reference and synthetic maps, respectively. These figures are
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[Ũ
]

10−2 10−1 100

k [pixels−1]

P
S

[Q̃
+
iŨ
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Fig. IV.12 Same as Fig. IV.6 but for a synthesis derived from a WPH-based
model.
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Fig. IV.13 Same as Fig. IV.7 but for a synthesis derived from a WPH-based
model.

to be compared to Figs. IV.6 and IV.7.
The agreement of the power spectra is much better compared to the results of Sect. IV.2.

In [199], the accuracy of the agreement of power spectrum statistics was shown to be
strongly dependent on the ∆n parameter, and the higher ∆n is the better these statis-
tics agree. Therefore, this very good agreement must be a consequence of this particular
choice of ∆n (we recall that ∆n = 2 here). Note however that we discern a very faint
discrepancy towards the Nyquist frequency recalling that of Fig. IV.6. This is similarly
attributed to gaps in the frequency coverage of the wavelet bank beyond the Nyquist disc
and could be corrected easily by extending the wavelet bank.

Distributions of the pixel values exhibit a quite good agreement, notably towards the
tails of the distributions. However this agreement remains slightly worse than that of
Fig. IV.13. These statistics have been shown in [199] to be partly constrained by the
scaling moments, which play an analogous role to the higher-order moments mentioned
in Sect. IV.2 to define Lone−point. Further improvement to constrain these distributions
is needed, which could involve adjustments in the definition of these scaling moments.
Note that there exist other simple strategies to improve this agreement, such as introduc-
ing additional constraints in the loss function based on the Kullback-Leibler divergence
between the distribution of pixel values of the reference and synthetic maps [201].
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IV.4 Discussion

We have introduced in this chapter two types of generative models of simulated Q̃+iŨ dust
polarization maps, based on their statistical descriptions derived from either the RWST
or the WPH. These models correspond to microcanonical gradient descent models that
were introduced in [190], and require to solve high-dimensional optimization problems
to generate realizations of the models. They allow us to assess the comprehensiveness
of a given statistical description by comparing syntheses and original maps by means
of a set of summary statistics. Here we have limited such comparisons to two kinds of
summary statistics: power spectrum statistics and PDFs of pixel values. We have shown
that with either the RWST statistics complemented by additional higher-order statistics
or the WPH statistics we reproduce well these summary statistics, although there is
still room for improvement. However, this work remains at the proof-of-concept stage. A
more refined statistical analysis would be needed, notably employing statistics quantifying
the non-Gaussianity of the data. The RWST and the WPH do capture a form of non-
Gaussianity, however it would be relevant to determine what kind of standard statistics
these do include on the example of simulated dust polarization data. In [199], it was
shown that the WPH statistics include an important part of the information captured
by the bispectrum or the Minkowski functionals on the example of simulated data of
the large-scale structure. Similar analyses would deserve to be conducted on simulated
dust polarization data. Finally, we have focused on the modeling of Q̃+ iŨ maps as the
statistical modeling of linear polarization remains the main challenge of upcoming CMB
experiments. However let us note that this kind of model may be applied very similarly
to intensity maps, or other kind of polarization observables such as Q+ iU maps or E or
B-modes maps.

This approach would deserve to be thoroughly compared to deep generative models
discussed in Chapter II. Perhaps the most salient difference with these approaches is that
here we do not need any training step, and are able to define generative models based on
a single realization. This avoids the difficulty of defining a relevant training set. This is
a true asset in a context where we necessarily face a single realization of our sky, with
strong statistical inhomogeneities of the dust emission across the sky.



Chapter V

Statistical denoising and enhanced
component separation methods

We have introduced the (R)WST and WPH as descriptive statistics of non-Gaussian data.
In the last chapter, we have shown how these may define generative statistical models
on the example of simulated Q̃ + iŨ dust polarization maps. Working with simulated
maps was a convenient simplification for our demonstration, allowing obviously much
more flexibility and control than with observational data. In particular, we did not have
to worry about the relevance of statistical homogeneity assumptions, about annoying
boundary conditions, and more importantly for dust polarization, we did not have to
worry about the pervasive and destructive impact of data noise. For Planck polarization
data, and notably at scales and in areas of the sky suited to find primordial B-modes (see
e.g. the BICEP2 field [2]), noise is a major limitation. It is difficult to model (see e.g.
[55] for the Planck satellite), and for component separation methods, this naturally leads
to higher uncertainties on the resulting estimates of the components.

In this chapter, I address the modeling of the dust polarized emission from noisy ob-
servations with the (R)WST or the WPH assuming that the noise distribution is known.
Indeed, the accuracy required for the detection of primordial B-modes is most certainly
unattainable by statistical models derived from physical models of the turbulent magne-
tized ISM, so that processing of noisy observational data is required. Noise has an impact
on statistics, usually by increasing their variability or by introducing potential biases.
This needs to be taken into account somehow during the modeling. Here, I introduce
a statistical denoising algorithm that aims to retrieve the non-Gaussian statistics of the
noise-free dust emission, also called the "true" emission. I implement this algorithm by
employing WPH representations of the data, although I could have made use of WST
representations in a similar way. We will see that this algorithm may be viewed as a reg-
ular image denoising algorithm even if its scope is much wider. Finally, I show that this
algorithm extends naturally to more general n-component separation problems, provided
statistical models for n− 1 of these are known.

This chapter is organized as follows. In a first section, we discuss the impact of noise
on the power spectrum, RWST and WPH statistics of simulated Q + iU dust maps,
mainly from an empirical perspective. Then, in a second section, we propose a statistical
denoising algorithm to mitigate the impact of noise on WPH statistics and retrieve non-

99
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Fig. V.1 Examples of Q maps taken from each data set Qα + iUα with
α ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. α increases from left to right and top to bottom.
The noisy maps are built from the same original noise-free Q map shown at the
top left. Units are arbitrary, but kept consistent between the maps.

Gaussian statistics of the true emission. After a validation of the algorithm on noisy
simulated data, we apply it to the 353 GHz polarized emission observed by Planck in
the Chamaeleon-Musca field, and discuss our results. Finally, in a third section, we show
how this algorithm may be extended to more general component separation problems and
present first results on Planck polarization observations of the BICEP2 field at 353 GHz.

Part of this chapter reprises the results of [200]. Codes employ PyWST and PyWPH (see
Appendix C).

V.1 The impact of noise

In this section, we show empirically how noise impacts the statistics of dust polarization
maps on the example of Q+iU noisy simulated data. We derive power spectrum statistics,
RWST statistics and WPH statistics for several levels of noise and give first elements to
understand these results.

V.1.1 Presentation of the data

We build here noisy mock Q+ iU data from the Q‖+ iU‖ data set that was introduced in
Chapter III. We recall that this data set comprises 14 Q+ iU maps denoted by s1,. . . , sM
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Fig. V.2 Top panel: Empirical Q + iU power spectra derived for each of the
Qα + iUα data sets (solid lines). We also show in dashed lines the power spectra
of the noises used to define the Qα + iUα data sets. Bottom panel: Empirical
verification of Eq. (V.4) for each of the noisy Qα+iUα data sets (α > 0), showing
the ratio of the estimate of the left-hand side to that of the right-hand side.

with M = 14. We call σs the standard deviation of the pixel values computed across the
14 maps. The standard deviation of complex data is taken to be σs =

√
σ2

Re(s) + σ2
Im(s).

For each map si, we build a noisy map di = si + αni, with ni a realization of a zero-
mean complex Gaussian white noise with a standard deviation σs (see Appendix A for a
definition) and α ∈ R a coefficient representing the level of the noise. In this context, we
define the signal-to-noise ratio (SNR) of di as the ratio of σs to the standard deviation of
αni, so that the SNR of di coincides with α−1. For a given α, we call Qα + iUα the data
set made of the 14 maps d1, . . . , dM . Note that we have in particular Q0 +iU0 = Q‖+iU‖.

In addition to the Q0 + iU0 data set, we build 5 noisy data sets Qα + iUα for
α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. As an illustration, we show in Fig. V.1 how a given Q map is
visually affected by these various levels of noise.

V.1.2 Impact on power spectrum statistics

We first discuss the impact of noise on the power spectrum statistics. This is a very
instructive example for which an analytical understanding is possible.

For each data set Qα+iUα we compute a mean empirical power spectrum by averaging
estimates of the power spectrum for each of the 14 maps of the data set. Details on the
definition of these estimates can be found in Appendix A. We use a regular binning in
k, and the error bars correspond to averages of the standard deviations of the means for
each map of the data set. We show in Fig. V.2 the corresponding results in solid lines.
We add, in dashed lines, similar results computed for each set of 14 noises involved in the
definition of a data set Qα + iUα.

Let us first remark that the empirical power spectra of the noises are approximately



102 Chapter V. Statistical denoising and enhanced component separation

constant functions, which is expected for white noises. The value of the constant is
proportional to α2 as a consequence of the definition of the power spectrum. Indeed, the
autocorrelation function of a stationary random field N verifies for α ∈ R:

CαN (τ ) = Cov [αN(r), αN(r + τ )]
= α2Cov [N(r), N(r + τ )]
= α2CN (τ ). (V.1)

We recall that the power spectrum is defined as the Fourier transform of the autocorrela-
tion function (see Appendix A), so that thanks to the linearity of the Fourier transform
we get:

PS[αN ] = α2PS[N ]. (V.2)

The empirical power spectrum of Qα + iUα evolves with α at scales where the power
spectrum of the noise is comparable to that of the true signal, i.e. mainly at small scales.
It progressively increases at small scales with the level of the noise, revealing an important
property of the power spectrum: it is additive when applied to independent components.
Given S and N two independent stationary random fields, with S representing the true
signal and N a noise, we have:

CS+N (τ ) = Cov [S(r) +N(r), S(r + τ ) +N(r + τ )]
= Cov [S(r), S(r + τ )] + Cov [N(r), N(r + τ )]

+ Cov [S(r), N(r + τ )] + Cov [N(r), S(r + τ )]
= Cov [S(r), S(r + τ )] + Cov [N(r), N(r + τ )]
= CS(τ ) + CN (τ ), (V.3)

since the Cov [S(r), N(r + τ )] and Cov [N(r), S(r + τ )] terms vanish due to the indepen-
dence of S and N . Finally, the linearity of the Fourier transform leads to:

PS[S +N ] = PS[S] + PS[N ]. (V.4)

This additive relation shows that the noise impact on the power spectrum is known a
priori, at least in terms of expected values. From an empirical perspective this relation
is not exact, although the error tends to zero in the limit of infinite sample1. We verify
empirically Eq. (V.4) for this study by showing in Fig. V.2 (bottom panel) the ratio of
the estimate of the left-hand side to that of the right-hand side. This demonstrates that
this relation holds empirically at a percent level for each value of α.

For statistics verifying such an additive relation, it is straightforward to define an
estimator of the true statistics. Indeed, here PS[S] can be simply estimated with:

P̂S[S] = P̂S[S +N ]− P̂S[N ], (V.5)

where P̂S[N ] and P̂S[S +N ] are estimators of PS[N ] and PS[S +N ], respectively.
Finally, let us mention that provided we have at our disposal two observations d1 = s+ n1

and d2 = s + n2, with n1 and n2 two independent realizations of the noise N , another
1This is true provided we make use of a consistent estimator of the power spectrum.
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Fig. V.3 Ŝiso
1 + log2(S̄0) coefficients for each of the Qα + iUα data sets.

useful unbiased estimate of PS[S] can be derived from the empirical cross-spectrum of d1
and d2 (see Appendix A for a definition). Indeed, one can show that for S, N1 and N2,
three independent stationary random fields, the cross-spectrum of S + N1 and S + N2,
called CS[S +N1, S +N2] coincides with the power spectrum of S, that is:

CS[S +N1, S +N2] = PS[S]. (V.6)

The proof is analogous to that of Eq. (V.4). Thus the empirical cross-spectrum of d1 and
d2 is an unbiased estimate of the power spectrum of S. For the analysis of CMB data,
or more generally in cosmology, this approach is common to circumvent data noise (see
e.g. [202]). A major asset of this power spectrum estimation method is that it does not
requires any noise model. This will be useful in Sect. V.2 when working with observational
data.

V.1.3 Impact on RWST statistics

We present a similar analysis of the impact of noise on RWST statistics. We derive the
RWST statistics associated with each Qα+ iUα data set using the same procedure as that
introduced in Sect. III.2.4. We focus on the impact of noise on isotropic coefficients as a
first step.

a) Impact on first-order coefficients

We show in Fig. V.3 the Ŝiso
1 coefficients corrected from the normalization related to the

S̄0 coefficients (similarly to Fig. III.12) for each Qα + iUα data set.2 The results shown
in Fig. V.3 are clearly in line with the power spectrum analysis: the Ŝiso

1 + log2(S̄0)
coefficients are all the more impacted as the scale j1 is small, and are increasing functions
of the noise level at fixed j1 value. However, any further analytical study of the noise

2This correction simplifies the interpretation of the Ŝiso
1 coefficients and avoids potential confusions.

Indeed, the S̄0 coefficients, which correspond to averages of the mean values of the modulus of the 14
maps for each data set (see Sect. III.1.2), increase with the noise level, so that the Ŝiso

1 coefficients would
have shifted downward at large scales for higher noise levels.
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impact on RWST first order coefficients turns out to be much more complicated than with
the power spectrum statistics. This is mainly due to the fact that these are roughly derived
from L1 norms of wavelet coefficients, which are not as handy as the L2 norms involved
in the definition of the power spectrum. Note however that thanks to the nonexpansivity
of the WST (see Sect. III.1.3), the deformation of the RWST statistics remains bounded
by the noise level.

b) Impact on second-order coefficients

We show in Fig. V.4 similar results for the Ŝiso,1
2 and Ŝiso,2

2 coefficients for a limited choice
of α values for better visibility. These second-order coefficients seem more sensitive to
noise than first-order coefficients. Looking first at the Ŝiso,1

2 coefficients, we see that the
coefficients with low j1 values are the most impacted. At high noise level and low j1, the
evolution of the Ŝiso,1

2 coefficients as a function of j2 resembles that of the phase random-
ized data sets shown in Fig. III.15, with a rapid and approximately linear decrease for
increasing values of j2. We recall that phase randomization was used as an approximation
to Gaussianization. We thus interpret this trend as a sign that the noise "Gaussianizes"
the data. Similarly, the impact of noise on the Ŝiso,2

2 coefficients is the most visible at low
j1 values. It also reminds results of phase randomized data sets shown in Fig. III.15, in
particular for high noise levels. Indeed, for α = 0.8 and j1 = 0, the Ŝiso,2

2 tends to zero for
increasing j2 whereas the corresponding α = 0.0 curve tends to a strictly positive value.
This is similarly interpreted as a sign of the deterioration of the filamentary structure of
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the maps.

V.1.4 Impact on WPH statistics

a) Derivation of the statistics

We now derive WPH statistics for each of the Qα + iUα data sets. We compute coef-
ficients for J = 7, L = 8 and ∆n = 0. This specific choice for ∆n implies that all the
WPH moments are estimated for τ = 0 only. We focus here on estimates of the WPH
moments, thus ignoring scaling moments defined in Sect. IV.3.1. Contrary to the analy-
sis of Sect. IV.3, we compute unnormalized estimates of the WPH moments to facilitate
interpretations. Given a map x, these are simply defined by:

C̃ξ1,p1,ξ2,p2 =
〈
x(ξ1,p1)x(ξ2,p2)〉, (V.7)

with x(ξ,p) = [x ?ψξ]p −
〈
[x ?ψξ)]p

〉
. Unlike their normalized counterparts, note that

they do not involve any reference map.
For a given data set Qα + iUα, we derive WPH statistics as follows. For each map

we compute a set of WPH coefficients corresponding to unnormalized estimates of the
subset of WPH moments that was introduced in Sect. IV.3.1.3 In order to reduce the
number of coefficients, thus simplifying their representation, we choose to focus on the
isotropic and parity-invariant properties of the data by reducing the angular dependencies
of the coefficients. To do that, similarly to what was done in [199], we average the WPH
coefficients over fixed values of |θ2−θ1| so that δθ = |θ2−θ1| is the only remaining angular
dependence of the coefficients, that is we compute:

Ĉj1,p1,j2,p2,δθ = 〈C̃ξj1,θ1 ,p1,ξj2,θ2 ,p2〉|θ1−θ2|=δθ, (V.8)

where 〈·〉|θ1−θ2|=δθ stands for an average over pairs (θ1, θ2) such that |θ1 − θ2| = δθ. We
denote by Ŝ(0,0), Ŝ(1,1), Ŝ(0,1), Ĉ(0,1), and Ĉphase the coefficients resulting from this angular
average for each category of moments. The C(0,1) coefficients were the only ones to
involve θ1 6= θ2 values (see Sect.IV.3.1), so that the Ĉ(0,1) coefficients are the only reduced
coefficients to involve more than one δθ value (for L = 8, in practice, δθ ∈ {kπ8 , k ∈ J0, 7K}).
On the contrary, the Ŝ(0,0), Ŝ(1,1), Ŝ(0,1), and Ĉphase coefficients were defined for θ1 = θ2
only, consequently, they do not depend on any angular variable anymore (i.e. δθ = 0).
Finally, the WPH statistics of the Qα+iUα data set correspond to averages of the resulting
coefficients across the 14 maps of the data set. Errors on these coefficients correspond to
standard deviations of the means.

b) Impact on the Ŝ(0,0), Ŝ(1,1), and Ŝ(0,1) coefficients

We show in Fig. V.5 the Ŝ(0,0), Ŝ(1,1), and Re(Ŝ(0,1)) coefficients associated with each
Qα + iUα data set. These only depend on the scale index j. We focus on the real part
of the Ŝ(0,1) coefficients for simplicity, although their imaginary parts could have been
shown instead without affecting the following discussion. As discussed in Sect. IV.3.1,

3Note that we first normalize the data set by scaling each map by σ−1
s , although this has no bearing

on the discussion.
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Fig. V.5 Ŝ(0,0), Ŝ(1,1), and Re(Ŝ(0,1)) coefficients for each of the Qα + iUα data
sets.
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Fig. V.6 Re(Ĉ(0,1)) (top), and Re(Ĉphase) (bottom) coefficients for the Qα+iUα
data sets with α ∈ {0.0, 0.4, 0.8}. Each curve corresponds to a fixed value of j1
with j2 ranging from j1 + 1 to J − 1 = 6. For visibility reasons, each curve is
shifted upwards by j1 × 10−4. For the Re(Ĉ(0,1)) coefficients, the (j2, |θ2 − θ1|)
dependence is shown in a lexicographical order, and the vertical dashed lines
delimit distinct j2 values. For the Re(Ĉphase) coefficients, at j1 = J − 2 the
curve is reduced to a single dot.
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the S(1,1) moments are directly related to the power spectrum, corresponding to weighted
averages of the power spectrum on the bandpasses of the related wavelets (see Eq. (IV.16)).
Consequently, the noise impact on the Ŝ(1,1) coefficients is essentially equivalent to that
already shown in Fig. V.2, although in this representation the x-axis is inverted compared
to that of Fig. V.2, as low j values correspond to high k values and vice versa. For
similar reasons, the S(1,1) moments are also additive in the sense that for two independent
stationary random fields X and N we have:

S(1,1)[X +N ] = S(1,1)[X] + S(1,1)[N ]. (V.9)

The proof is completely analogous to the power spectrum case. Therefore, the Ŝ(1,1)

coefficients must approximately verify the same relation. The impact of the noise on the
Ŝ(0,0) coefficients are also related to the results shown for the first order RWST statistics
although it is not straightforward. Indeed, a S(0,0) moment of a random field X for τ = 0
can be written:

S(0,0)(j, θ) = Cov [|X ? ψj,θ|, |X ? ψj,θ|]

= E
[
|X ? ψj,θ|2

]
− E [|X ? ψj,θ|]2

= S(1,1)(j, θ)− S1(j, θ)2, (V.10)

where S1(j, θ) is a first order scattering moment associated with X as defined in III.1.2.
The Ŝiso

1 +log2(S̄0) coefficients being approximately equivalent to the logarithm of angular
averages of the S1 coefficients, we thus expect the Ŝ(0,0) coefficients to be consistent with a
combination of the results shown for the Ŝiso

1 +log2(S̄0) and Ŝ(1,1) coefficients. Finally, we
see that the Re(Ŝ(0,1)) coefficients seem to be much less impacted by the noise. Also, note
that the important error bars on these coefficients show that the variability across samples
is much more important for these coefficients than for the Ŝ(0,0) and Ŝ(1,1) coefficients.

c) Impact on the Ĉ(0,1) and Ĉphase coefficients

We now show in Fig. V.6 the real parts of the Ĉ(0,1), and Ĉphase coefficients associated
with the Qα + iUα data sets with α ∈ {0.0, 0.4, 0.8}. The Ĉ(0,1) coefficients depend
on (j1, j2, δθ), while the Ĉphase coefficients depend on (j1, j2) only. We focus on the
real parts of these coefficients for simplicity. The large error bars on these coefficients
also emphasize their important variability. Here again, the coefficients seem to be weakly
impacted by noise compared to the Ŝ(0,0) and Ŝ(1,1) coefficients although subtle differences
remain perceptible. To have a clearer view of these differences, we plot in Fig. V.7 the
differences of these coefficients with those of Q0 + iU0 for the Qα + iUα data sets with
α ∈ {0.2, 0.4, 0.8}. For the Re(Ĉ(0,1)) coefficients, in the α = 0.2 case, the impact seems
stronger for coefficients with low j1 and high j2 values, while coefficients with high j1
values are very weakly impacted. When the noise level increases, the impact propagates
towards higher j1 values, and even to the largest ones in the case of α = 0.8. For the
Re(Ĉphase) coefficients, the impact for a given noise level does not seem to be particularly
dependent on scales j1 and j2. The agreement with the α = 0.0 case seems to deteriorate
uniformly with scales for increasing noise levels.

Note that we expect the noise to "Gaussianize" the data at scales where it is promi-
nent. In [6], it is proved that the C(0,1) and Cphase moments of a Gaussian random field
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Fig. V.7 Re(Ĉ(0,1)) (top) and Re(Ĉphase) (bottom) differences between
Qα + iUα with α ∈ {0.2, 0.4, 0.8} and Q0 + iU0. Each curve corresponds to
a fixed value of j1 with j2 ranging from j1 +1 to J−1 = 6. For visibility reasons,
each curve is shifted upwards by j1×10−5. The horizontal dotted lines mark null
differences per curve. Contrary to Fig. V.6, we do not show the corresponding
(large) error bars for better visibility.

vanish provided they involve wavelets with non-overlapping bandpasses. Therefore, we
expect the Ĉ(0,1), and Ĉphase coefficients affected by the noise to tend towards zero for
increasing noise level. Further examination of these results indicates such a trend.

These numerical results would deserve a complementary mathematical analysis (as
far as this is possible), especially to understand the origin of the higher variability across
samples of the Ŝ(0,1), Ĉ(0,1) and Ĉphase coefficients, as well as an explanation for their
apparent reduced sensitivity to noise. However, this analysis is beyond the scope of this
work, and will have to be undertaken in further studies.

V.2 A statistical denoising algorithm with the WPH

Contrary to power spectrum statistics, (R)WST or WPH statistics are not generally
additive when derived from a sum of independent components. For noisy data, we thus
do not have a straightforward way to define estimates of the noise-free emission statistics.
To address this problem, we introduce in this section a statistical denoising method based
on the WPH statistics. It is designed to retrieve the non-Gaussian statistical properties
of the noise-free dust emission. However, we will see that it also provides denoised maps,
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so that this algorithm may also be used as a regular image denoising algorithm. For the
modeling of the dust emission, the motivation for retrieving the statistics of the noise-
free emission from noisy data is to define a generative statistical model similar to those
introduced in the previous chapter that would not be biased by noise. This is a necessary
step for the modeling of dust polarization data where noise cannot be ignored.

After a presentation of our statistical denoising algorithm, we validate it on mock data
combining a simulated Q+ iU dust map and a Planck noise map. Then, we show how it
applies on actual observational data, namely the 353 GHz polarized emission observed by
Planck in the Chamaeleon-Musca field. We also give first elements of comparison of this
algorithm with other denoising methods. We finally conclude this section with a more
general discussion.

Note that an important part of this section directly reprises results of [200].

V.2.1 Method and validation

a) Description of the method

Basis of the method. We observe a noisy map d that is modeled as follows:

d = s+ n, (V.11)

with s being the target truth map and n being an additive noise signal. The noise n
is an unknown realization of a random field N . We assume that we know N , meaning
that we are able to generate as many independent realizations of it as needed. We call
{n1, . . . , nM} M of these.

We introduce a method to retrieve the statistical properties of s while denoising d.
This statistical denoising consists in iteratively building a denoised map s̃, starting from
d, such that the {s̃+ni}i maps and the d map are "sufficiently close" in a given statistical
space. This algorithm is inspired by the computation of realizations of microcanonical
gradient descent models that were discussed in the previous chapter. In the following,
we call φ the operator that computes a set of summary statistics from a given map. The
algorithm consists in minimizing the following loss function:

LM (u) = 1
M

M∑
i=1
‖φ (u+ ni)− φ (d)‖2 , (V.12)

where ‖ · ‖ denotes the Euclidean norm. We choose u0 = d to initialize the optimizer.
The denoised map s̃ corresponds to an approximate minimum obtained by performing this
optimization in pixel space, using an L-BFGS optimizer [195]. We note that a limitation
of this algorithm relies on the (ideal) assumption that we know N . In practice, any
non-modeled statistical property of the noise will be considered to be part of the signal s.

Choice of the operator φ. The choice of the operator φ is obviously paramount to the
quality of the method and must be tailored to the properties of s and n. In the context of
ISM polarization data, we expect s to be relatively regular and to exhibit non-Gaussian
signatures due to the interactions between scales (e.g., filamentary structures), while the
noise is expected to be highly irregular and close to a (possibly spatially-varying) Gaussian
white noise.
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S(1,1) S(0,0) S(0,1) C(0,1) Cphase Lj,p Total Ratio (%)

960 960 128 11776 5056 40 18920 ∼ 7

Table V.1 – Number of statistical coefficients per class of moments for the parameters of
complex-valued data. The last columns gives the ratio of the total number of coefficients
to the number of pixels in a 512× 512 pixels image.

In this work, the φ operator computes WPH statistics. We have seen in the last
chapter that WPH statistics are able to define satisfactory generative models of dust
polarization maps. Moreover, they have been shown to be relatively exhaustive statistics
to characterize non-Gaussian data in [199] as explained in Sect. IV.3.1. We could have
chosen similarly (R)WST statistics, however denoising experiments using the WST have
demonstrated a higher probability for the resulting denoised maps to exhibit annoying
numerical artifacts. Here, we apply φ to complex-valued polarization maps Q+ iU . This
operator computes normalized WPH statistics as described in Sect IV.3.1. Contrary to
what was done in the last chapter, here we choose J = 8, thus increasing the range of
scales probed by our statistics. We give in Table V.1 the resulting number of coefficients
per class of moments for a given Q+ iU map.

Two-step procedure. We have noticed that the reference map used to normalize the
WPH coefficients (see Sect. IV.3.1) plays an important role for the quality of the sta-
tistical denoising. Indeed, this normalization conditions the relative importance of the
coefficients during the optimization. It is not clear yet how to best choose this reference
map. However, we propose in the following a denoising procedure in two steps where
the purpose of the first step is precisely to find a suitable reference map. This procedure
has been proven empirically efficient to retrieve the power spectrum and the PDFs of the
increments of the truth map s, as we shall see.

The denoising procedure is as follows. We perform a first denoising of d using a φ
operator that only takes into account the estimates of the S(1,1) and S(0,0) moments, and
normalizing these with the reference map u0 = d. This first step yields a map s̃0, which
has notably a power spectrum much closer to that of the truth map s. Then, we perform
a second denoising of d using a φ operator that includes the whole set of estimates of
WPH moments and scaling moments, but here normalizing these estimates with u0 = s̃0.
We call s̃ the output of this second step.

b) Validation on a simulation

In this section, we assess the performance of our denoising algorithm by applying it to
mock data d = s+n, emulating a noisy Q+iU Planck polarization signal. We show figures
of merit based on power spectra, probability density functions (PDFs) of the increments
of the maps, and WPH statistics. For the power spectra and the PDFs of the increments,
we only show results for Q for simplicity, although those for U are similar.

Building a simulated noisy map. Here s is a simulated Q+ iU map taken from the
Q⊥ + iU⊥ data set introduced in Sect. III.2. We simulate a Planck observation of dust
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Fig. V.8 Top row: Simulated Q maps corresponding to the truth s (left), the
noise n (middle), and the resulting noisy map d (right). Bottom row: Denoised
simulated Q map Re(s̃) (left) next to the difference noisy-denoised Re(d − s̃)
(middle) and denoising error Re(s − s̃) (right). Units are arbitrary, but kept
consistent between the maps.

polarization using Planck instrumental noise maps introduced further in Sect. V.2.2 [55].
We have a total of 300 realizations of this noise at our disposal. We pick one of these,
called n, to build d, and we use the remainingM = 299 noise maps, labeled {n1, . . . , nM},
for the denoising algorithm.

Here we define the SNR of d as the ratio of the standard deviations of Re(s) and
Re(n). We adjust this SNR by scaling s, so that the impact of the noise on the power
spectrum "resembles" that on the Planck map presented in Sect. V.2.2. This is not
straightforward since the power spectrum of the simulated map s has a different slope
from that estimated for the noise-free emission from the Planck map (see Figs. V.9 and
V.14). We decide to adjust the SNR so that the scale ki, at which the power spectra of n
and s intersect, coincides with the one from the Planckmap. Figs. V.9 and V.14 show that
ki/(2π) ≈ 0.8 px−1. This procedure leads to SNR ≈ 0.4 for the simulated map, which is
more than twice lower than the SNR of the observational map discussed in Sect. V.2.2.

We show in Fig. V.8 (top) the simulated Q maps corresponding to the truth s (left),
the noise n (middle), and the resulting noisy map d (right). The map Re(s) exhibits
coherent structures such as filaments and large smooth regions that are characteristic
of its non-Gaussian statistical properties. On the other hand, Re(n) seems close to an
inhomogeneous white Gaussian noise. The spatial inhomogeneity appears as variations
of the local standard deviation due to the Planck satellite scanning strategy. Finally,
in Re(d), coherent structures at intermediate and small scales are hard or impossible to
identify.
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Fig. V.9 Q maps power spectra for d, s, s̃, n (all in solid lines), d− s̃, and s− s̃,
and cross-spectrum between the Q maps of s̃ and s (all in dashed lines). In the
bottom panel, we also show the ratio of the power spectra of d and s̃ with that
of s.

Visual results. We apply our denoising method to the simulated noisy map d and show,
in Fig. V.8 (bottom), the resulting denoised Q map Re(s̃) (left) next to the difference
between the noisy and denoised maps Re(d− s̃) (middle) and the denoising error Re(s− s̃)
(right). The map Re(s̃) shows that the noise level has been drastically reduced and that
we are able to recover the filamentary structure down to a minimum scale. We can identify
the smooth regions of Re(s) even if there still remains a visible noise. The similarities
between Re(d− s̃) and Re(n) are striking. The local variations of the standard deviation
of the noise are clearly recovered, demonstrating that the inhomogeneity of the noise is
not an issue for our method. Finally, Re(s − s̃) exhibits some remaining structures that
match the thinnest filaments appearing in Re(s), on top of a more diffuse background.
This indicates that down to a minimum scale, below which the algorithm struggles to
recover features, most of the structures are efficiently reconstructed.

Quantitative results: power spectrum. Figure V.9 compares the power spectra of
the six maps shown in Fig. V.8 plus the cross-spectrum between the denoised and truth
maps. These power spectra are estimated as usual (see Appendix A). The cross-spectrum
is computed in a similar way, with a linearly-spaced binning up to k/(2π) = 0.14 px−1

and logarithmically spaced bins above in order to lower the statistical variance4. We first
point out that the power spectrum of d coincides with the sum of those of s and n because
of the statistical independence between s and n. The power spectra of Re(s̃) and Re(s)
are in very good agreement with each other up to 0.18 px−1, at which scale the noise
power is ten times that of the signal. At smaller scales, where the noise dominates the

4Note that this empirical cross-spectrum, called CS[Re(s),Re(s̃)], is related to the empirical power
spectra by the following relation: PS[Re(s− s̃)] = PS[Re(s)] + PS[Re(s̃)]− 2CS[Re(s),Re(s̃)].
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Fig. V.10 PDFs of the increments of Q for d (noisy), s (truth), and s̃ (denoised),
computed for three logarithmically spaced lags going from 2 to 32 pixels. For
each lag, the increments were normalized by the standard deviation σl of the
Gaussian that fits the core of the PDF of the noisy map. In the bottom panels,
we also show the ratio of the PDFs of s̃ with those of s for each lag.

signal even more, our algorithm is not able to retrieve the true power spectrum but gets
closer to it. The power spectrum of Re(d− s̃) coincides with that of Re(n) at small scales,
and this agreement progressively worsens toward larger scales. This large-scale behavior
shows that our algorithm does not remove the already negligible noise, as shown by the
superposition of the power spectrum of Re(s− s̃) and that of Re(n) at these scales. The
cross-spectrum s̃× s is slightly below the power spectrum of s at intermediate scales and
this discrepancy increases toward the smallest scales. At intermediate scales, where the
power spectrum of Re(s̃) matches that of Re(s), we suspect this discrepancy to stem from
differences between the phases of the Fourier components of s and s̃ that would deserve
a further quantification. Nevertheless, the production of a denoised map whose power
spectrum coincides with that of s, even though n is ten times more powerful than s, and
that retains a significant correlation with s is a striking success of our method.

Quantitative results: PDFs of the increments. To better characterize the non-
Gaussianity of s̃, we compute the PDFs of the increments of Q for the noisy, denoised,
and truth maps, and we plot them in Fig. V.10 for three scalar lags (see Sect. II.1.3).
The increment δQl(r) for a scalar lag l and at a position r corresponds to the set of
differences δQl(r) = Q(r)−Q(r + l) with l ≤ |l| < l + 1 in pixel units. Contrary to
the case of the noisy map, the distributions of increments for Re(s) are far from Gaus-
sian for every lag. This is a clear signature of the non-Gaussianity of the data as we
expect Gaussian-distributed increments for homogeneous Gaussian data. Our method
recovers these statistics and their non-Gaussian tails with limited distortion for each lag,
demonstrating its efficiency in retrieving non-Gaussianity in the data.

Quantitative results: WPH. We finally conclude this validation by a WPH analysis.
We compare the WPH statistics of d, s, and s̃. The computation of the WPH statistics is
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Fig. V.11 Ŝ(0,0), Ŝ(1,1), and Re(Ŝ(0,1)) coefficients for d, s, and s̃.
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Ĉ

p
h

a
se

)
×

10
3

1 2 3 4 5 6 7

j2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7

j2

Fig. V.12 Re(Ĉ(0,1)) (top), and Re(Ĉphase) (bottom) coefficients for d, s, and
s̃. We plot the coefficients corresponding to s in the left column, and the dif-
ferences of coefficients between d and s (s̃ and s) in the middle (right) column,
respectively. Each curve corresponds to a fixed value of j1 with j2 ranging from
j1 + 1 to J − 1 = 6. For visibility reasons, each curve is shifted upwards by
j1 × 5 × 10−4. For the Re(Ĉ(0,1)) coefficients, the (j2, |θ2 − θ1|) dependence is
shown in a lexicographical order, and the vertical dashed lines delimit distinct
j2 values. For the Re(Ĉphase) coefficients, at j1 = J − 2 the curve is reduced to
a single dot. In the middle and right columns, the horizontal dotted lines mark
null differences for each curve.
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similar to what was done in Sect. V.1.4, and we also derive equivalent angular-averaged co-
efficients to simplify their representation. We show in Fig. V.11 the corresponding Ŝ(0,0),
Ŝ(1,1), and Re(Ŝ(0,1)) coefficients. As expected, the Ŝ(1,1) coefficients show results consis-
tent with Fig. V.9. The true Ŝ(1,1) coefficients are well retrieved down to j = 2. Below
this scale, the agreement between s̃ and s worsens and shows that the denoised map s̃ has
a significant excess of power at j = 1 and j = 0. For the Ŝ(0,0) coefficients, the denoised
map has been significantly corrected from the bias introduced by the noise, although small
discrepancies remain for j ≤ 3. Finally, we see on the plot of the Re(Ŝ(0,1)) coefficients
that the denoising globally mitigates the impact of the noise on these coefficients even if
this remains subtle.

We plot in Fig. V.12 analog results for the Re(Ĉ(0,1)) and Re(Ĉphase) coefficients.
We display in the left column the coefficients corresponding to the truth map s, and in
the middle and right columns, we focus on the differences of the coefficients associated
with d and s (middle), and those associated with s̃ and s (right). On these differences,
the horizontal dotted lines mark the levels of null differences for each j1 value. For
the Re(Ĉ(0,1)) coefficients, the denoising clearly improves these differences although a
significant bias remains up to j1 = 3 coefficients. The impact of the denoising on the
Re(Ĉphase) coefficients is much less visible, and there does not seem to be any significant
improvement for the retrieval of the truth statistics.

V.2.2 Application to Planck polarization data

a) Presentation of the data

We now apply our denoising method to a Q + iU polarization map of the Chamaeleon-
Musca region observed at 353 GHz with the Planck satellite (PR3 data5 [55]). At this
frequency, the CMB is negligible and the dominant components are the dust emission and
the noise (see Fig. 34 of [29]). We consider the Q and U maps corresponding to the full
mission, and those corresponding to the two half-missions. We also make use of the 300
end-to-end simulated Q and U maps of the noise and the systematics of the instrument for
the full mission (the ones used in Sect. V.2.1). We project all of these maps on 512× 512
grids with a pixel size of 2.35′, centered on the region of the Chamaeleon-Musca clouds at
Galactic coordinates (l, b) = (300.26◦,−16.77◦). We use a Gnomonic projection through
the HEALPix/healpy6 package [121, 203].

In Fig. V.13, we show the projected full-mission Q and U maps that we aim to denoise
(left column), as well as the denoised map discussed in the next section (middle column).

b) Denoising results

We apply the denoising method presented in Sect. V.2.1 to the full mission Q+ iU map,
using the corresponding 300 noises. Figure V.13 (middle column) shows the resulting
denoised Q and U maps, respectively. The overall noise level has been clearly mitigated
although subtle residuals of the patterns due to the scanning strategy remain, and we can
now discern a more complex variety of structures even in the regions where the signal is
weak.

5https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Main_Page
6http://healpix.sourceforge.net

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Main_Page
http://healpix.sourceforge.net
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Fig. V.13 Noisy (left column) and denoised (middle column) Q (top row) and U
(bottom row) maps of the Chamaeleon-Musca region as observed by the Planck
satellite at 353 GHz. The noisy maps are denoised as described in Sect. V.2.1.
We also show the corresponding GNILC maps (right column) for reference.
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Fig. V.15 PDFs of the Chamaeleon-Musca Q maps increments for d (noisy),
s̃ (denoised), and GNILC map, computed for three logarithmically spaced lags
ranging from 4.7′ to 75.2′. For each lag, the increments were normalized by the
standard deviation σl of the Gaussian that fits the core of the PDF of the noisy
map.

In Fig. V.14, we show a power spectrum analysis of the denoising of the Q map,
comparing the power spectra of the noisy and denoised maps Re(d) and Re(s̃), of one noise
map Re(n), and of the difference between the noisy and denoised maps Re(d−s̃), as well as
the cross-spectrum between the two half-missions maps d1 and d2.7 This cross-spectrum
gives an unbiased estimate of the power spectrum of the true signal since the noise signals
are independent (see Sect. V.1.2). It is satisfactory to see that the power spectrum of
Re(s̃) is consistent with this cross-spectrum for scales down to k/(2π) ∼ 3.4 deg−1. Also,
Re(d−s̃) behaves similarly to what we have observed in Sec. V.2.1, with a power spectrum
consistent with that of Re(n) when the noise dominates the dust signal, and falling below
what is expected when the emission of the dust begins to dominate.

Figure V.15 compares the PDFs of the increments of Q for the noisy and denoised
maps, and for the same three scalar lags as in Fig. V.10. Based on the results of Sect. V.2.1,
we expect the PDFs of the denoised map to be good estimates for the statistics of the
truth map. These results show important differences between the noisy and denoised
maps that are again a signature of the non-Gaussianity of the true signal. We find similar
results for the increments of U .

V.2.3 Comparison to other methods

The literature on image denoising is rich and abundant (see e.g. [204, 205, 206]), and a
thorough comparison of our method with other denoising algorithms would be beyond
the scope of this work. Nevertheless, to give some first elements of comparison, we
compare our method to the following: (1) Wiener filtering and sampling methods, which
are widely used in astrophysics; and (2) the GNILC method [67], which was used on
Planck polarization data and provides a local smoothing kernel in order to optimally
remove the noise. Note that comparison (1) is performed on the simulated data used for
the validation of the algorithm, while comparison (2) is performed on the observational

7Similar results are obtained for U .
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data.

a) Wiener filtering and posterior sampling

Note that this subsection is mostly the work of Niall Jeffrey and is adapted from [200].
In terms of notations, in the following, we use bold capital letters to refer to matrices
(e.g. S), unbold lowercase letters to refer to two-dimensional maps (e.g. s, which is
consistent with the rest of this chapter), and bold lowercase letters to refer to both deter-
ministic and random column vectors corresponding to one-dimensional arrangements of
two-dimensional variables (e.g. s, column vector of dimension 5122).

Formalism. Wiener filtering is a typical approach to signal inference for problems of the
form given by Eq. (V.11). In this case, the Wiener filtered reconstruction s̃W [207, 208]
is given by

s̃W = Wd = S
(
S +N

)−1
d , (V.13)

where S = E(ss†) and N = E(nn†) are the signal and noise covariance matrices, respec-
tively.8 For brevity we have assumed E (s) = E (n) = 0. This is the linear filter that gives
the expected minimum variance of residuals (Wd− s) for known S and N .

Furthermore, it is both the maximum a posteriori and mean posterior solution if the
noise and signal are drawn from Gaussian distributions. That is, if the real-valued data
are distributed with a likelihood

p(d|s,N) = 1√
(det2πN)

exp
[
− 1

2(d− s)†N−1(d− s)
]
, (V.14)

and the prior distribution for the real-valued signal is

p(s|S) = 1√
(det2πS)

exp
[
− 1

2s
†S−1s

]
, (V.15)

then the Wiener posterior distribution is given by

p(s|S,N ,d) ∝ p(d|s,N)p(s|S)

∝ exp
[
− 1

2(s−Wd)†(S−1 +N−1)(s−Wd)
]
.

(V.16)

For the problem described in this work, the noise covariance N can be estimated from
the samples of noise realizations and the signal covariance S can either be assumed or
jointly estimated from the data [209].

Messenger field approach. We avoid inverting the denseW matrix by implementing
a messenger field approach, first described by [210] and now widely used in cosmology
(e.g., [211, 212, 213, 214, 215]). We assume that the underlying signal is homogeneous and
isotropic, such that the signal covariance S is diagonal in harmonic space with elements
corresponding to the one-dimensional power spectrum. The uncorrelated noise gives a
diagonal noise covariance N in pixel space, so that the messenger field can efficiently
iterate between harmonic and pixel space.

8s† denotes the complex conjugate transpose of s.
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Fig. V.16 Left: Wiener filtered map s̃W. Middle: Same as Fig. V.9, but for s̃W.
The power spectrum of s̃W is suppressed at small scales as expected. Right: Same
as Fig. V.10, but for l = 2px with the Wiener filtered (mean) map and a Wiener
posterior sample.

As we are concerned with polarization data, we use a spin-2 harmonic transforma-
tion between {sQ, sU} = {Re(s), Im(s)} and {sE , sB}, using the curl-free E-mode and
divergence-free B-mode representation (see Sect. I.2.1). The signal covariance in har-
monic space is therefore a concatenation of {SE ,SB}. This formulation preserves the
relevant Q-U correlation.

Even if the Wiener filtered reconstructed signal s̃W is the maximum of the posterior
distribution p(s|d), functions f(s̃W) do not correspond to the maximum p(f(s)|d). For
example, the two-point statistics (e.g., variance or power spectra) of s̃W are not unbiased
estimates of the power spectrum of s. Instead, we can draw sample images si from
the posterior p(s|d) (Eq. (V.16)), so that the transformed samples f(si) are correctly
distributed according to p(f(s)|d). These realizations are generated by amending the
messenger field algorithm [210].

Results. Figure V.16 shows the Wiener filtered reconstruction of the simulated Q map
(left). The low amplitude power spectrum of the residual map Re(s− s̃W) demonstrates
that the pixel values are close to the truth, whereas the power spectrum of Re(s̃W) is biased
low (center), which is expected. To compare the methods, we compared with functions
of samples si from the Wiener posterior. Though not plotted here, as we input the true
power spectrum (which was not done for the WPH denoising method), the realizations si
have the correct power spectra with relatively small sample variance.

As a goal of this denoising work is to retain the statistical non-Gaussianity in the
signal, which could be represented in the WPH coefficients, we again compare the PDF of
increments δQl. The right panel of V.16 shows the comparison between the data Re(d),
the signal Re(s), the Wiener filtered (mean) map Re(s̃W), and a realization Re(s̃W,sample)
drawn from the Wiener posterior. We see that neither the Wiener mean map Re(s̃W)
nor the sample Re(s̃W,sample) capture the non-Gaussianity in terms of δQl increments
as successfully as our WPH denoising method. Indeed, for |δQl|/σl ' 1, there is a
clear divergence from the true PDF, showing that the tails of the true statistics are not
recovered at all.

Furthermore, inspection of the WPH coefficients of the Wiener posterior samples
φ(si) shows them to be noticeably further from those of the truth map than φ(s̃). These
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preliminary results are encouraging, but not surprising. The Gaussian prior distribution in
the statistical model of the Wiener posterior leads to a poor recovery of the non-Gaussian
structures that are intrinsic to the polarized dust emission.

b) GNILC

The GNILC method is a wavelet-based component separation method designed to extract
the emission of the Galactic foregrounds from the Planck full-sky maps (see Sect. I.2.3).
It has been applied to polarization maps Q and U [29, 58] to disentangle the thermal dust
polarized emission from the CMB polarization and instrumental noise over the entire sky
(see Sect. I.2.3 for additional details). We show in Fig. V.13 (right column) the resulting
Q and U maps for the Chamaeleon-Musca field observed at 353 GHz. We note that at
this frequency, the CMB can be safely ignored, so that the main effect of the GNILC
algorithm is to denoise the dust emission. In these maps, we clearly see that the smallest
scales, most contaminated by the noise, have been filtered out. Compared to GNILC, our
denoised maps thus include a wider variety of structures at intermediate and small scales.

A quantitative comparison based on the power spectrum and the PDFs of the in-
crements for the Q maps is shown in Figs. V.14 and V.15. The power spectrum of the
GNILC map plummets at small scales and exhibits a lack of power compared to that
of s̃ and the cross-spectrum d1 × d2. The PDFs of the increments also show important
discrepancies, especially in the tails, between the s̃ map and the GNILC map. Assuming
that the statistics of s̃ give a reasonable order of magnitude of the true statistics, based
on the validation on simulated data, this suggests a distortion of these statistics by the
GNILC method. This semi-quantitative comparison demonstrates the superiority of our
method for recovering the true power spectrum and, a priori, non-Gaussian properties.

V.2.4 Discussion
We have introduced a new method for the denoising of Planck polarization data with an
algorithm inspired by the generation of random synthetic maps from WPH statistics that
characterize the spatial structure of dust emission. This method takes advantage of the
strong statistical differences between the signal of interest (non-Gaussian and regular) and
the noise (close to Gaussian and irregular) by performing an optimization that constrains
the statistical properties of the denoised map plus noise realizations.

We applied our method to mock Q+ iU noisy data designed to emulate typical Planck
polarization maps of dust in the diffuse ISM. The denoised map has a power spectrum
that coincides with the true power spectrum down to a minimum scale where the power
of the noise is ten times that of the signal, while being highly correlated with the true
signal. It recovers the PDFs of the increments for various isotropic lags, demonstrat-
ing that our method is able to retrieve non-Gaussianity in the data. A complementary
WPH analysis demonstrates that the denoising mitigates the impact of the noise on these
statistics, although significant discrepancies remain. Finally, we applied this method to a
353 GHz Planck observation of the Chamaeleon-Musca field. To give some first elements
of comparison, we have compared our results to those obtained with a Wiener approach
(for the mock data), and those of the GNILC component separation method (for the
observational data). For the Wiener approach, we find that neither the Wiener filtered
image nor realizations drawn from the Wiener posterior distribution are able to retrieve
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the PDFs of the increments, even when the true power spectrum was given as input. The
comparison with GNILC shows that our method better recovers the true power spectrum
and the PDFs of the increments.

Our method has been introduced as a statistical denoising method, but we have shown
that it can also be used as a regular denoising algorithm. Moreover, this should be more
generally applicable to component separation problems. In particular, we expect this
method to be efficient at disentangling dust emission from the CMB, cosmic infrared
background, and noise in Planck maps, provided that we have accurate models for each
of these contaminants at our disposal. Therefore, it could hopefully enhance the scientific
outcome of Planck data and other CMB experiments. This idea will be developed in the
next section.

One of the main motivations of our work is to build a generative model of the dust
polarization signal that takes into account the non-Gaussianity of the data. Such a model
derived from the analysis of Planck data may be used to simulate the dust polarization
sky. Our denoising algorithm constitutes a step toward this modeling, in the sense that
WPH statistics of the dust emission, corrected to a first approximation from noise contam-
ination, may be used to define a generative model as explained in the previous chapter.
However we have seen that an important part of the WPH coefficients of the denoised
map remains significantly affected by the noise. Further work is needed to quantify the
impact of the noise on this generative model.

V.3 Toward enhanced component separation methods

A denoising problem can be viewed as a two-component separation problem, so that
the previous algorithm acts in this sense as a component separation method. However
our separation is designed to be statistical, meaning that contrary to Planck component
separation methods that were introduced in Sect. I.2.3 we are not primarily interested in
the deterministic maps of the components, but rather in their statistical properties. In
this section, we present a first attempt to generalize this algorithm to the more general
problem of a n-component statistical separation. We assume that we have at our disposal
statistical models for n − 1 components, and that we are interested in retrieving the
non-Gaussian statistical properties of the last one.

The extension of the algorithm is very natural, and it is discussed first. Then, we
provide a first application to a Q+ iU polarization map at 353 GHz in the BICEP2 field
as observed by the Planck satellite. The observed data is modeled as a sum of three com-
ponents: a dust component, a CMB component, and a noise component. Based on models
of the CMB and noise components, we focus on the retrieval of the statistical properties
of the dust component. We conclude this section by discussing a few perspectives of this
method.

V.3.1 Extension of the statistical denoising algorithm

In a n-component separation problem, the observed signal d is modeled as a sum of
components si:

d = s1 + · · ·+ sn, (V.17)
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with potentially one of these components corresponding to a noise signal. These compo-
nents are modeled as realizations of some random fields S1, . . . , Sn. We assume that we
know n− 1 of them, let us say S2, . . . , Sn, meaning that we are able to generate as many
independent realizations of these random fields as needed. The goal is to estimate the
statistical properties of S1, which are unknown.

We generalize our previous statistical algorithm introduced in Sect. V.2.1 as follows.
We considerM2, . . . ,Mn realizations of S2, . . . , Sn, respectively. For each random field Si,
we call these realizations {si,1, . . . , si,Mi}. Given a statistical operator φ, the generalized
algorithm consists in minimizing the following loss function:

L(u) = 1
M2 . . .Mn

M2∑
j2=1

. . .
Mn∑
jn=1
‖φ(u+ s2,j2 + · · ·+ sn,jn)− φ(d)‖2 . (V.18)

Here again we use a L-BFGS optimizer initialized with u0 = d. In practice in the fol-
lowing, φ will also correspond to WPH statistics, and we use the same procedure as that
introduced in Sect. V.2.1.

Note that, although this algorithm is presented as a n-component separation prob-
lem, it remains formally completely equivalent to a two-component separation problem.
Indeed, defining t = s2 + · · · + sn, and T = S2 + . . . Sn we have simply retrieved an
equivalent formulation of the method described in Sect. V.2.1. However, this formulation
remains a useful starting point for defining more complex losses involving for example
additional terms of the form

∥∥φ(u+ s2,j2 + · · ·+ sn−1,jn−1)− φ(d− sn,jn)
∥∥2, which could

improve the recovery of the target statistics.

V.3.2 Application to the BICEP2 field

This section presents very preliminary results, which were obtained in collaboration with
Jonathan Aumont and Léo Vacher.

a) Presentation of the data

We apply our generalized method to a Q+ iU polarization map of the BICEP2 field ob-
served at 353 GHz with the Planck satellite (PR3 data9 [55]). Contrary to the Chamaeleon-
Musca field, in this field and at 353 GHz, dust emission is no longer largely dominant at
all scales compared to the CMB, and we expect comparable power between the two at
small scales. We consider the Q and U maps corresponding to the full mission, and those
corresponding to the half-missions. We also make use of the 300 end-to-end simulated Q
and U maps of the noise and the systematics of the instrument for the full mission, as well
as of 300 simulated CMB maps FFP10 (Full Focal Plane simulations, v. 10). We project
these maps on 256× 256 grids with a pixel size of 8′, centered on the region observed by
the BICEP2 experiment, that is at Galactic coordinates (l, b) = (316◦,−57◦).

9https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Main_Page

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/Main_Page
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Fig. V.17 Observed (left column) and estimated dust contribution (right col-
umn) Q (top row) and U (bottom row) maps of the BICEP2 region as observed
by the Planck satellite at 353 GHz.

b) Results

We apply a similar procedure to that of Sect. V.2 although here the loss takes the following
form:

L(u) = 1
M2M3

M2∑
i=1

M3∑
j=1
‖φ(u+ sCMB,i + nj)− φ(d)‖2 , (V.19)

where M2 = M3 = 300, sCMB,1, . . . , sCMB,M2 are the 300 CMB realizations, and n1, . . . ,
nM3 are the 300 noise realizations. To keep the computations reasonable, we limit the
double sum to a diagonal summation, that is we only sum over i = j values.

We show in Fig. V.17 the resulting dust map s̃d (right column) next to the observa-
tional total map d (left column). The overall noise level has been clearly mitigated, and
we now better discern the underlying dust signal. As a first quantitative assessment, we
show in Fig. V.18 a power spectrum analysis that is similar to that of Sect. V.2.2. We
plot the power spectra of the Q maps corresponding to the total map d and dust map
s̃d, as well as power spectra corresponding to one specific noise map n and one CMB
map sCMB. We also show the power spectrum of d − s̃d, which should approximately
coincide with the sum of the power spectra of n and sCMB. However note that the power
spectrum of the noise remains largely dominant over that of the CMB, so that this sum
is dominated by the power of the noise. Finally, we show the cross-spectrum between the
two half-mission maps d1 and d2, which estimates the power spectrum of the sum of the
dust and CMB signals. The power spectrum of s̃d appears to be satisfactorily consistent
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Fig. V.18 Q maps power spectra for d, s̃d, n, sCMB (all in solid lines), and
d− s̃, and cross-spectrum between d1 and d2 (both in dashed lines). This cross-
spectrum gives an unbiased estimate of the power spectrum of the sum of the
dust and CMB emissions.

with this cross-spectrum up to the degree scale as expected. Indeed, over this range of
scales, the contribution of the CMB is negligible in the empirical cross-spectrum, so that
this cross-spectrum is a good estimate of the power spectrum of the dust emission. This
agreement worsens for scales smaller than the degree scale, showing that an excess of
power remains in the estimated dust map s̃d. On the other hand, the power spectrum of
d− s̃d agrees with the sum of the power spectra of n and sCMB with a good approximation
for most scales, as expected. However, at the largest scales, significant discrepancies show
that, similarly to the results of Sect. V.2, the statistical component separation procedure
has a weak impact on the largest scales, for which the dust signal is largely dominant over
the noise and CMB components.

V.3.3 Perspectives

These results, while very preliminary, illustrate one of the motivations of this thesis, that
is the improvement of component separation methods for the detection of primordial
B-modes. In this context, one has to retrieve the statistical properties of the CMB
emission with a sufficiently high accuracy to hopefully detect discrepancies with the CMB
model involved in this example, i.e. a fiducial model with null B-mode signal. We have
been working at 353 GHz here for convenience, as the SNR remains sufficiently high for
our method to give interesting results. However, at this frequency the signal remains
dominated by the dust emission. For the detection of this B-mode signal, main target
frequencies are lower, typically around 100 GHz (see e.g. [2]), so that dust and CMB are
much more comparable in terms of power (see Chapter I). However, at 100 GHz, the SNR
of Planck data in the BICEP2 region is too low to perform a similar study.

Let us recall that this approach ignores an important aspect of polarization data,
namely its spectral dimension. Chapter II has underlined the richness of dust spectral
dimension. Therefore, ignoring it by tackling this statistical component separation prob-
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lem using a single frequency channel is an unnecessary complication. Dust polarization
data is correlated across the frequency channels, and we need to take advantage of this.
WPH moments characterize the non-Gaussian statistical properties of a single random
field X, however, since they rely on covariances, it is very natural to define analogous
cross-moments to characterize the joint non-Gaussian statistical properties of two ran-
dom fields X and Y . For X and Y two statistically homogeneous random fields, these
cross-WPH moments of X and Y may be defined as follows:

Cξi,pi,ξj ,pj [X,Y ](τ ) = Cov
([
X ? ψξi(r)

]pi , [Y ? ψξj (r + τ )
]pj) . (V.20)

The definition of a consistent subset of cross-WPH moments / standard WPH moments
to characterize the joint statistical properties of two random fields is needed. Once this
is done, the next step would be to perform joint statistical component separations of
multi-frequency data. This will be the subject of future work.

Another comparable problem, although it concerns total intensity data, is that of the
detection of the non-Gaussian statistical properties of the cosmic infrared background
(CIB). Indeed, the CIB emission remains entangled with the dust emission, and disentan-
gling these two components while taking into account the non-Gaussian properties of the
data remains an open problem. Numerical experiments have already been conducted in
that direction with a similar algorithm to the one used here [216]. This shows the interest
of such statistical component separation algorithms beyond the CMB context.





Conclusion and perspectives

I have introduced new statistics for the description and modeling of polarized thermal
emission maps from interstellar dust, namely the (R)WST and the WPH. These pro-
vide low-variance multiscale representations of data with non-Gaussian statistics, with a
particular focus on the characterization of the interactions between scales. These repre-
sentations shed new light on the statistical properties of the magnetized ISM, and may be
related to the physics of the ISM, although this remains to be explored fully. In particular,
the RWST, which is built from a fit of the angular dependence of the WST coefficients,
yields interpretable coefficients quantifying the multiscale properties of polarization maps
in terms of isotropic and anisotropic contributions. Moreover, the (R)WST and WPH
statistics allow us to build generative statistical models from a very limited set of maps.
Polarization maps drawn from such models are visually and quantitatively consistent with
the input data, in statistical terms. This demonstrates the relevance of these statistics
to characterize dust polarization maps. Finally, I have exhibited the detrimental impact
of noise on the WST and WPH statistics, thus highlighting the complications inherent
in the modeling of observational data. To address this problem, I have designed a statis-
tical denoising algorithm to recover the statistical properties of the noise-free emission.
Two publicly available Python packages complement this work, namely PyWST and PyWPH,
which allow respectively for WST and WPH statistical analyses of two-dimensional data.

The perspectives of this work are numerous. First, it should be noted that an impor-
tant part of this work focused on methodological issues. This methodology should now
be applied more widely to observational data (e.g. Advanced ACT data [217]). However,
a current limitation is that (R)WST/WPH analyses can only be conducted within the
flat-sky approximation, i.e., to a small enough part of the sky. Indeed, for larger areas,
and up to full-sky analyses, the extension of the WST and WPH on the sphere remains
to be done. A useful starting point could be the needlet formalism that has already been
introduced in the literature for wavelet analysis on the sphere [68, 69].

Second, throughout this work, an important aspect of dust polarization data has been
ignored, namely its spectral dimension. Dust polarization data is correlated across fre-
quency channels, and we need to take advantage of this for the improvement of component
separation methods. The WPH statistics are naturally extendable to the characterization
of interactions between the scales of two different maps since they rely on covariances.
The definition of relevant cross-WPH moments mentioned in Chapter V has already been
initiated. An immediate application of these moments would be to improve the statistical
denoising algorithm introduced in Chapter V by leveraging this multi-frequency informa-
tion.

We have seen that this statistical denoising algorithm may be extended to more general

127



128 Conclusion and perspectives

statistical component separation problems. The extension to data involving a combination
of dust, CMB, and noise signals was demonstrated as a proof-of-concept using Planck
data. Yet, this would deserve further analysis, notably involving a validation on simulated
data. In another on-going project I am also involved in, the WPH is used to separate
dust and CIB anisotropies in Herschel far-infrared observations [216] in a similar way as
the denoising problem addressed in Chapter V.

Improving component separation methods for the detection of primordial B-modes
can take an alternative way to what has been outlined in Chapter V. I have also been
involved in a project that is introduced in [201], where WPH-based generative models of
simulated maps of the polarized emission of dust play a central role for CMB B-mode
inference. Within a likelihood-free Bayesian inference framework, the authors manage to
estimate the pixel-level posterior probability of a simulated B-mode map based on a single
frequency simulated observation for a BICEP-like sky patch. This further legitimates the
interest of such generative models of polarized dust emission.

Finally, let us remark that in this thesis, I have focused on the analysis of polarization
data through Stokes parameters I, Q and U , mostly applying the (R)WST and WPH
to Q + iU or Q̃ + iŨ maps. However, for the quest of primordial B-modes, the natural
variables are E and B, and a similar statistical analysis involving these variables would
be relevant. In particular, it would be interesting to study how well generative models
based on the (R)WST/WPH statistics would capture observational properties of the dust
foreground, such as the E/B asymmetry, and the TE and TB correlations.



Appendix A
Random fields: definitions and
elementary properties

Random processes, also known as stochastic processes, are mathematical objects of proba-
bility theory that are commonly used to model systems varying randomly in a tremendous
variety of domains (e.g. physics, signal processing, biology, finance). In cosmology, typical
applications include the modeling of the CMB [33], or the description of the fluctuations
of density of the large-scale structure of the Universe (see e.g. [218]). In astrophysics of
the ISM, in addition to being crucial for the spatial modeling of the dust emission (see
Chapter II for a general discussion), they are for example also used for the modeling of
the temporal fluctuations of temperature of small dust grains (see e.g. [219]).

In this appendix, we give elementary definitions and notions revolving around these
mathematical objects that are relevant to this thesis. In particular, we formally introduce
the power spectrum, which is extensively discussed in this thesis, and Gaussian random
fields (GRFs), which are the most common random fields used for the statistical modeling
of the dust emission. This appendix does not aim to be either an exhaustive introduction
to the subject, or perfectly rigorous from a mathematical point of view. For a more com-
plete introduction on the subject, we refer the interested reader to introductory textbooks
such as [220] on which part of this appendix is based.

A.1 Basic concepts

A.1.1 Random processes and random fields: definitions

Let us consider a probability space (Ω,A, P ) where Ω is a sample space, A is a σ-algebra,
and P a probability measure.

Definition A.1.1. A random process is a collection of random variables indexed by a set
T called the index set, or parameter set. These random variables all take their values in
the same measurable space E.

Practically, a random process X is a function X : T ×Ω→ E, meaning that for each
outcome ω of the sample space Ω, X assigns the function X(·, ω) : T → E, which is called
a realization of X. Thus, whereas a mere random variable assigns an element of E to a
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given outcome, a random process assigns a function. Obviously, for all t ∈ T , X(t, ·) is a
random variable.

The index set usually corresponds to a parametrization of time, with typically T = R
or T = N for a continuous or discrete time, respectively. But it also commonly parametrizes
space, which can be the Euclidean space Rn or more convoluted manifolds. Space can
also be assumed discrete or continuous. When T represents space, we rather call X a
random field.

In this thesis we only deal with random fields. The index set T may be the sphere S2

when modeling observations on the whole sky (e.g. sky map of the CMB or of the dust
emission), or a rectangular domain [a, b]× [c, d] when the flat-sky approximation is valid.
When discrete measurements require to assume a discrete space, typically for an image of
size M ×N , we may have T = J0,M − 1K× J0, N − 1K, or T = Z/MZ×Z/NZ if periodic
boundary conditions are assumed. The random fields we will consider will be either real
or complex-valued, so that we have E = R or E = C, respectively.

In the following, we will discuss real or complex-valued random fields only. To sim-
plify notations we will not show the dependence on the outcome, for example denoting
X : R2 → R a real-valued random field indexed by R2. Also, we will refer to random fields
with capital letters (e.g. X), and to their realizations with lowercase letters (e.g. x).

A.1.2 Elementary analysis tools

The distribution of a random field is determined by the ensemble of its finite-dimensional
distributions. These are defined as follows.

Definition A.1.2. The finite-dimensional distributions of a random field X are the joint
distributions of X(r1), . . . , X(rn) with r1, . . . , rn ∈ T and n ∈ N.

The finite-dimensional distributions are usually described in terms of joint cumulative
distribution functions (CDFs), or in terms of joint probability density functions (PDFs)
when they exist. We consider in the following random fields for which these joint PDFs
do exist. For a random field X, a given n, and r1, . . . , rn ∈ T , the joint PDF of the
random vector (X(r1), . . . , X(rn)), also referred to as a n-th order PDF of X, is denoted
fX(x1, . . . , xn; r1, . . . , rn), with x1, . . . , xn ∈ E.

In general deriving n-th order PDFs, either analytically or numerically, is often in-
tractable, especially when n increases, so that one typically resorts to the computation
of simpler quantities to characterize the properties of a random field. We consider in the
following a random field X for which all the following quantities are well defined. Here
again, we refer to textbooks for details on the validity of the definitions.

The most simple and natural quantities to derive from a given random field X are the
mean function, and the autocorrelation (or alternately autocovariance) function. These
are defined as follows.

Definition A.1.3. The mean function of X, denoted µX(r), is for each r the expected
value of the random variable X(r), that is:

µX(r) = E [X(r)] =
∫
E
xfX(x; r)dx. (A.1)



A.1 Basic concepts 131

Definition A.1.4. The autocorrelation function of X, denoted RX(r1, r2), is the ex-
pected value of the products of random variables X(r1)X(r2), that is:

RX(r1, r2) = E
[
X(r1)X(r2)

]
=
∫
E
x1x2fX(x1, x2; r1, r2)dx1dx2, (A.2)

where x is the complex conjugate of x.
Definition A.1.5. The autocovariance function of X, denoted CX(r1, r2), is the covari-
ance1 between the random variables X(r1) and X(r2), that is:

CX(r1, r2) = Cov [X(r1), X(r2)] ,

= E
[
(X(r1)− E [X(r1)]) (X(r2)− E [X(r2)])

]
. (A.3)

The autocovariance function is obviously simply related to the autocorrelation and
mean functions as:

CX(r1, r2) = RX(r1, r2)− µX(r1)µX(r2). (A.4)
The mean function and the autocorrelation/autocovariance function of a random field

are often referred to as first and second order statistics, respectively. These are perhaps
the most immediate quantities to look at when studying a random field.

For a complex-valued random field, some complementary second order information
might be measured by the pseudo-autocovariance function.2

Definition A.1.6. The pseudo-autocovariance function of X, denoted C ′X(r1, r2), is the
covariance between the random variables X(r1) and X(r2), that is:

C ′X(r1, r2) = Cov
[
X(r1), X(r2)

]
,

= E [(X(r1)− E [X(r1)]) (X(r2)− E [X(r2)])] . (A.5)
Obviously in the case of a real-valued random field, the pseudo-autocovariance and

the autocovariance functions are identical.
We also define for two random fields X and Y , the cross-correlation function and the

cross-covariance function as follows.
Definition A.1.7. The cross-correlation function RXY , and the cross-covariance function
CXY of a pair of random fields are defined as:

RXY (r1, r2) = E
[
X(r1)Y (r2)

]
, (A.6)

CXY (r1, r2) = Cov [X(r1), Y (r2)] . (A.7)
And we have similarly:

CXY (r1, r2) = RXY (r1, r2)− µX(r1)µY (r2). (A.8)
Finally, we can define simple higher order statistics. Common ones are n-point corre-

lation functions.
Definition A.1.8. For a random field X and n ∈ N∗, the n-point correlation function is
the function Cn,X : Tn → E defined for all r1, . . . , rn ∈ T as:

Cn,X(r1, . . . , rn) = E [X(r1) . . . X(rn)] . (A.9)
1We recall that the covariance of two random variables X and Y , called Cov [X,Y ], is defined by

Cov [X,Y ] = E
[
(X − E (X))(Y − E (Y ))

]
.

2Note that we could also define on the same model a pseudo-autocorrelation function.
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A.1.3 Common properties
We will often deal with random fields whose distribution are invariant under the action of
symmetries of T , typically translations or rotations. We review some related definitions
and their immediate implications.

A translation invariant random field is called a stationary random field. This vocab-
ulary, while usually referring to temporal shift invariance when T describes time, will
be employed likewise to refer to spatial shift invariance when T describes space. In this
work, a stationary random field will also be called equivalently a statistically homogeneous
random field.

Definition A.1.9. A random field X = (X(r))r∈T is (strict sense) stationary if and only
if for all τ ∈ T , (X(r + τ ))r∈T has the same distribution as X.

This is equivalent to the fact that all the finite-dimensional distributions of X are
invariant to global translations, meaning in practice that for any given n-th order PDF,
for all τ ∈ T , we have fX(x1, . . . , xn; r1 + τ , . . . , rn + τ ) = fX(x1, . . . , xn; r1, . . . , rn).

Showing that a random field is strict sense stationary can be inextricable without
knowing all the finite-dimensional distributions of X. A looser and more practical form
of stationarity, called wide sense stationarity, is thus usually employed.

Definition A.1.10. A random field X is wide sense stationary (WSS) if and only if
its mean, autocovariance and pseudo-autocovariance functions (or equivalently its mean,
autocorrelation and pseudo-autocorrelation functions) are invariant to global translations,
that is if and only if:

µX(r + τ ) = µX(r) for all τ , r ∈ T , (A.10)
CX(r1 + τ , r2 + τ ) = CX(r1, r2) for all τ , r1, r2 ∈ T , (A.11)
C ′X(r1 + τ , r2 + τ ) = C ′X(r1, r2) for all τ , r1, r2 ∈ T . (A.12)

Obviously strict sense stationarity implies WSS, but the converse is not true. We will
say that a random field is non-stationary when it is not WSS.

For a WSS random field X, the mean function is a constant function, and the
(pseudo-)autocovariance effectively only depends on one variable, so that we simplify
the notations by defining:

µX = µX(r) for all r ∈ T , (A.13)
CX(τ ) = CX(r, r + τ ) for all r ∈ T , (A.14)
C ′X(τ ) = C ′X(r, r + τ ) for all r ∈ T . (A.15)

The autocorrelation function RX of a WSS random field X also verifies two useful
basic properties.

Proposition A.1.1. For a WSS random field X we have for all τ ∈ T :

1. RX(τ ) = RX(−τ ), and an identical relation for CX ,

2. |RX(τ )| ≤ RX(0), meaning that the maximum of the modulus of the autocorrelation
function is at the origin.
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Another important class of invariant random fields are isotropic random fields, that
are invariant to rotations.

Definition A.1.11. A random field X = (X(r))r∈T is isotropic if and only if for any
rotation g of T , (X(gr))r∈T has the same distribution as X.

We also define self-similar random fields, whose distributions are simply transformed
under scaling symmetries.

Definition A.1.12. A random field X = (X(r))r∈T is self-similar of order H > 0 if and
only if for all λ > 0, (X(λr))r∈T has the same distribution as λHX = (λHX(r))r∈T .

Note that we could also define weaker forms of these definitions by analogy with the
definition of wide sense stationarity.

Finally, we end this section by mentioning the notion or ergodicity. When observing
realizations of a WSS random field, we may wonder how to estimate its mean or its
autocorrelation function, or even other types of statistics. Obviously, if one observes
many independent realizations of the same random field, it will be straightforward to
estimate these statistics by computing averages over the realizations, called ensemble
averages. However, if one only observes a single realization of the random field, the
problem might seem intractable. An intuitive way to estimate, for example, the mean
of a WSS random field X given a single realization x is to compute the spatial average
〈x〉A = 1

|A|
∫
A x(r)dr, where A is some bounded domain of T and |A| its volume. This is

motivated by the intuition that when the volume of A goes to infinity, the spatial average
should converge to the ensemble average. Yet, there is a priori no guarantee for that.
A random field that satisfies this property is said to be ergodic (in the mean, on this
example).

Definition A.1.13. A WSS random field X is said to be ergodic if ensemble averages
involving the process can be estimated through spatial averages of any realization x of the
process. Typically, one can restrict the definition of ergodicity to weaker forms, such as
ergodicity in the mean, meaning 〈x(r)〉 = E [X(r)], or ergodicity in the autocorrelation
function, meaning 〈x(r)x(r + τ )〉 = E [X(r)X(r + τ )].

A.2 Spectral analysis

A.2.1 Power spectrum: definition and properties

In this thesis, we extensively discuss the power spectrum statistics, which is introduced as
a standard (although not comprehensive) statistics to describe the properties of data. For
a WSS random field, it is simply defined as the Fourier transform of the autocorrelation
function, thus describing the same statistical content as the autocorrelation function but
from a spectral point of view.

Definition A.2.1. For a WSS random field X, the power spectrum, or power spectral
density, of X, denoted SX , is defined as the Fourier transform of the autocorrelation
function RX : T → E, that is:

SX = F [RX ], (A.16)
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where F is the (potentially multi-dimensional) Fourier transform on T .3

Depending on the nature of T , F may refer to the usual (continuous) Fourier trans-
form, or may be the discrete Fourier transform (DFT), or other. For example, for a
random field X defined on T = R2, F is the two-dimensional Fourier transform and we
have for all k ∈ R2:

SX(k) =
∫
R2
RX(τ )e−ik·τdk. (A.17)

On other other hand, if T describes the pixels of a random image X of size M × N
with periodic boundary conditions, that is with T = Z/MZ× Z/NZ, F is the DFT (see
Appendix B for more details) and the power spectrum of X is, for all ξ ∈ Z/MZ×Z/NZ:

SX(ξ) =
∑
τ∈T

RX(τ )e−2iπ(kxτx/M+kyτy/N). (A.18)

Let us also remark that the definition of the power spectrum necessarily depends on
the choice of convention chosen to define the Fourier transform.

We also define the cross-spectrum as the Fourier transform of the cross-correlation
function.

Definition A.2.2. For a pair of random fields X and Y , the cross-spectrum, or cross
spectral density, between X and Y , denoted SXY , is defined as the Fourier transform of
the cross-correlation function, that is:

SXY = F [RXY ]. (A.19)

We now restrain the following discussion to the case of a stationary random field X
defined on T = Z/MZ × Z/NZ, which typically models the statistical properties of an
image of size M × N assuming periodic boundary conditions. This kind of model is
standard for image analysis when stationarity can be assumed, and it will often be used
or implicitly assumed in this thesis. In this case, the power spectrum of X is defined as
in Eq. (A.18). From this definition, one can derive the useful following proposition (see
e.g. [221] for a proof).

Proposition A.2.1. For a WSS random field defined on T = Z/MZ × Z/NZ, we have
for all ξ ∈ T :

SX(ξ) = 1
MN

E
[
|X̂(ξ)|2

]
. (A.20)

This connects the power spectrum to a second-order moment derived from the DFT of
X, and in practice we will estimate the power spectrum of a random image X by means
of this relation.

Fourier modes derived from the DFT are conveniently indexed by ξ ∈ T , however
one can define a more interpretable variable corresponding to a physical wave vector.
With ∆ the spatial step, which has obviously the dimension of a distance, we define the

3A classical alternative definition is to define the power spectrum of a random process X, here assumed
to be defined on T = R to simplify, as SX(f) = limt0→+∞ E

[
|X̂t0 (f)|2

]
/2t0, where X̂t0 is the Fourier

transform of a truncated version ofX that is null when |t| ≥ t0. Thanks to the Wiener-Khintchine-Einstein
theorem this second definition does coincide with the first one [220].
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Fig. A.1 Illustration of the power spectrum estimation algorithm, showing an
example image (left, this comes from the I‖ data set introduced in Chapter III),
the map of the squared modulus of its DFT centered on its null frequency and
with a logarithmic color scale (middle), and the power spectrum deduced from
the middle map as described in Sect. A.2.2. The circle drawn in dashed line
(middle) delimits the Nyquist disc.

wave vector k corresponding to ξ ∈ T as k = 2π∆−1
(
ξ̃x/M, ξ̃y/N

)
, with ξ̃x = ξx for

0 ≤ ξx ≤ M/2 and ξ̃x = ξx −M for M/2 < ξx ≤ M − 1, and a similar definition for
ξ̃y. This way, the wave vector k is such that kx, ky ∈ [−π/∆, π/∆]. We call ±π/∆ the
Nyquist wavenumber, corresponding to the highest spatial frequency one can probe along
one dimension of some discrete data. Note that for rectangular images, we can have wave
vectors k such that |k| > π/∆. We will say that these modes are "out of the Nyquist
disc".

A.2.2 Power spectrum: estimation

Power spectrum estimation is a vast topic, which is extensively covered in the literature.
We refer for instance to textbooks [220] and [222] for a broader outlook on this subject.
Here we introduce a very simple method to estimate a power spectrum from an image
with periodic boundary conditions. We make use of this method to estimate all the power
spectra shown in this manuscript.

Let us consider an image x of size M × N . We assume that this image can be
rightfully modeled as a realization of a random field X defined on T = Z/MZ × Z/NZ
(thus implicitly enforcing periodic boundary conditions on X). Moreover, we assume X
to be stationary and isotropic. These are in general strong assumptions, so one has to be
careful on their implications for any statistical analysis.

With ∆ the spatial step of the data, we first introduce a binning of the interval [0, π/∆],
that is a finite strictly increasing sequence {k0, . . . , kQ} with k0 = 0 and kQ = π/∆.
We associate to this binning a sequence of bin centers T̃ = {k̃0, . . . , k̃Q−1} defined by
k̃m = (km + km+1)/2. We now define the estimator of the power spectrum of X, often
simply called "the power spectrum of x" or "the empirical power spectrum of X", as
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ŜX : T̃ → [0,+∞) such that for all k̃m ∈ T̃ :

ŜX(k̃m) = 1
MN

1
|Γk̃m |

∑
k∈Γk̃m

|x̂(k)|2, (A.21)

where Γk̃m = {k | km ≤ |k| < km+1} and |Γk̃m | its cardinality.4 We also estimate
uncertainties σŜX for ŜX computing the standard deviation of the mean within each bin,
that is:

σŜX (k̃m) = 1
|Γk̃m |

 ∑
k∈Γk̃m

( 1
MN

|x̂(k)|2 − ŜX(k̃m)
)2
1/2

. (A.22)

We illustrate this algorithm in Fig. A.1 showing how it applies to a simulated intensity
map extracted from the I‖ data set that is introduced in Chapter III. The power spectrum
(right) is built from azimuthal averages on the map of the squared modulus of the DFT
of the initial image (middle). Only modes within the Nyquist disc, which is delimited
by the circle drawn in dashed line in the middle panel, are used to estimate the power
spectrum shown in the right panel. Note that we see on this example a sharp anisotropy
in the map of the squared Fourier modulus, showing that on this example the isotropic
assumption might be questionable with a single realization.

A.2.3 Bispectrum: definition
One can define, by analogy with the power spectrum, higher order descriptive statistics
based on the Fourier transform of a stationary random field. For reference, we introduce
here the bispectrum, which is a quite common statistics to assess the non-Gaussianity
of a stationary random field. Indeed, when it is defined as the Fourier transform of the
third-order cumulant, it is expected to be null for a stationary gaussian random field
(see below). For convenience, we define the bispectrum here in a slightly different way,
although it does not change its statistical content at all.
Definition A.2.3. The bispectrum of a stationary random field X, called BX , is defined
as the Fourier transform of the three-point correlation function C3,X , that is:

BX = F [C3,X ]. (A.23)
For a stationary random field, C3,X is effectively a function of two variables, that is

C3,X(τ1, τ2) = C3,X(r, r + τ1, r + τ2) for any r ∈ T , and the Fourier transform applies
both on τ1 and on τ2.

For a stationary random image X of size M ×N defined on T = Z/MZ× Z/NZ we
have, similarly to the case of the power spectrum, the useful following proposition.
Proposition A.2.2. For a stationary random field defined on T = Z/MZ × Z/NZ, we
have for all ξ1, ξ2 ∈ T :

BX(ξ1, ξ2) = 1
MN

E
[
X̂(ξ1)X̂(ξ2)X̂(ξ1 + ξ2)

]
. (A.24)

Note that, for this property to be valid rigorously in the case of a complex-valued
random field, we must redefine C3,X as C3,X(r1, r2, r3) = E

[
X(r1)X(r2)X(r3)

]
.

4Mind the conflict of notation between the hat symbol denoting both a statistical estimator ŜX and a
Fourier mode x̂(k).
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A.3 Gaussian random fields

Gaussian random fields (GRFs) are important examples of random fields. They are widely
used in statistical modeling, and their properties can be easily derived analytically. By
opposition, we will say that a random field is non-Gaussian if it is not a GRF.

A.3.1 Definition
Before giving the definition of a GRF, we recall those of Gaussian random variables and
Gaussian random vectors.

Definition A.3.1. A real-valued Gaussian (or normal) random variable X is a random
variable with a Gaussian distribution, whose PDF is given by:

fX(x) = 1√
2πσ2

exp
(
−(x−m)2

2σ2

)
for all x ∈ R, (A.25)

with m = E [X] the mean of X, and σ2 = Var [X] its variance.

When X is Gaussian (or normally) distributed with mean m and variance σ2, we
denote this by X ∼ N (m,σ2).

Definition A.3.2. A real-valued random vector (X1, . . . , Xn) is said to be Gaussian
if and only if every linear combination of its components α1X1 + · · · + αnXn with
α1, . . . , αn ∈ R is a real-valued Gaussian random variable.

For a real-valued random (column) vector X = (X1, . . . , Xn)T, one can define the
mean vector µ = E [X] and the covariance matrix Σ = E

[
(X − µ)(X − µ)T

]
. These

elements fully characterize the distribution of X and we note X ∼ N (µ,Σ). When the
covariance matrix Σ is not singular, the joint PDF of X has an analog expression to that
of Eq. (A.25).

Proposition A.3.1. The joint PDF of a real-valued Gaussian random vector (X1, . . . , Xn)
when its covariance matrix Σ is not singular reads:

fX(x1, . . . , xn) = 1√
(2π)n det(Σ)

exp
(
−1

2 (x− µ)T Σ−1 (x− µ)
)
. (A.26)

Complex-valued Gaussian random variables and vectors are defined from their real-
valued analogs as follows.

Definition A.3.3. A complex-valued random variable X is said to be Gaussian if and
only if (Re(X), Im(X)) is a real-valued Gaussian random vector. Similarly, (X1, . . . , Xn)
is a complex-valued Gaussian random vector if and only if the real-valued random vector
(Re(X1), . . . ,Re(Xn), Im(X1), . . . , Im(Xn)) is Gaussian.

Complex-valued Gaussian random vectors can thus be viewed as real-valued Gaus-
sian random vectors and characterized accordingly. However, within a fully complex
formalism, a complex-valued Gaussian random vector X = (X1, . . . , Xn)T is defined
by its mean vector µ = E [X], its covariance matrix Σ = E

[
(X − µ) (X − µ)T], and
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its pseudo-covariance (or relation) matrix Σ′ = E
[
(X − µ) (X − µ)T

]
, and we write

X ∼ CN (µ,Σ,Σ′).
Now let us define in this context a Gaussian random field, which can be either real-

valued (E = R) or complex-valued (E = C).

Definition A.3.4. A Gaussian random field (GRF) X : T → E is a random field
such that every linear combination of the form α1X(r1) + · · · + αnX(rn) with n ∈ N,
α1, . . . , αn ∈ E and r1, . . . , rn ∈ T is a Gaussian random variable.

Equivalently, X : T → E is a GRF if and only if for all n ∈ N and r1, . . . , rn ∈ T ,
(X(r1), . . . , X(rn)) is a Gaussian random vector.

A.3.2 Characterization
A GRF X is determined by its mean function, its autocovariance function, and its pseudo-
autocovariance function (which is equal to the autocovariance function in the real-valued
case). Indeed, its finite-dimensional distributions are all multivariate Gaussian distribu-
tions depending on µX , CX , and C ′X only. More precisely, the PDF of the Gaussian ran-
dom vector (X(r1), . . . , X(rn)) only depends on the mean vector (µX(r1), . . . , µX(rn)),
and the autocovariance and pseudo-autocovariance matrices defined by Σij = CX(ri, rj)
and Σ′ij = C ′X(ri, rj), respectively. Note that a direct consequence of this characterization
is that if a GRF X is WSS then it is strict sense stationary.

In this thesis, we often claim that to characterize non-Gaussianity we need to go be-
yond power spectra measurements. It is a consequence of this previous characterization.
Indeed, for real-valued GRFs, this implies that a stationary real-valued GRF is character-
ized by its mean and power spectrum. For complex-valued GRFs, this is true only when
the pseudo-autocovariance function is null, which is usually assumed.5

Proposition A.3.2. A stationary GRF X that is either real-valued or complex-valued
with null pseudo-autocovariance function is entirely defined by its mean µX and its power
spectrum SX .

Let us finally mention a useful result of probability theory for Gaussian random vec-
tors, called Isserlis’ theorem or Wick’s probability theorem. This theorem emphasizes the
comprehensiveness of second-order statistics to characterize a GRF.

Theorem A.3.1 (Isserlis, Wick). If (X1, . . . , Xn) is a zero-mean real-valued Gaussian
random vector, then:

E [X1 . . . Xn] =
∑
p∈Pn

∏
{i,j}∈p

E [XiXj ] , (A.27)

where Pn is the set of all partitions of J1, nK into subsets of two elements.

Let us consider (X1, . . . , Xn) a zero-mean real-valued Gaussian random vector. Note
that for odd n value, that is n = 2k + 1, we obviously have P2k+1 = ∅, and this theorem
thus implies that:

E [X1X2 . . . X2k+1] = 0. (A.28)
5A null pseudo-autocovariance functions may result from circular symmetry, that is the invariance of

the distribution of the random field to a multiplication by a global phase factor eiφ with φ ∈ R, which is
relatively common.
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On the other hand, for n = 2k, this theorem states that E [X1 . . . X2k] may be written as
a sum of |P2k| = (2k − 1)!! second-order moments. For example, we have for n = 4:

E [X1X2X3X4] = E [X1X2] E [X3X4] + E [X1X3] E [X2X4] + E [X1X4] E [X2X3] . (A.29)

For a GRF, the consequence of this is that any n-point correlation function is either
null (for odd n), or, can be written in terms of the two-point correlation function (for
even n). This result implies that the bispectrum of a zero-mean GRF is always zero,
underlining its relevance to characterize non-Gaussianity. Note that this theorem has
extensions in the case of complex-valued Gaussian random vectors (see e.g. [223]).

A.3.3 Examples

We now discuss a few typical examples of GRFs which are mentioned in this manuscript.
The most simple GRF we can define is the Gaussian white noise. It is simply a zero-

mean stationary GRF X that is completely spatially uncorrelated. Therefore for any
r1, r2 ∈ T with r1 6= r2, X(r1) and X(r2) are independent Gaussian random variables,
and CX(r2− r1) = RX(r2− r1) = 0. Alternatively, Gaussian white noises can be defined
in an equivalent way as follows.

Definition A.3.5. A Gaussian white noise X : T → E is a zero-mean stationary GRF
with a constant power spectrum SX .

We also give the definition of fractional Brownian fields which have been notably
employed for the modeling of the dust emission (see Chapter II). These are well known
examples of self-similar random fields (see e.g. [224]).

Definition A.3.6. A fractional Brownian field X : T → E is a Gaussian random field
defined for a given H ∈ (0, 1) by:

• µX(r) = 0 for all r ∈ T ,

• CX(r1, r2) = V
2

(
‖r1‖2H + ‖r2‖2H − ‖r1 − r2‖2H

)
for all r1, r2 ∈ T and V ∈ R+.

The real number H is called the Hurst exponent of X. When V = 1, we say that X is a
standard fractional Brownian field.

When T is an interval of R, a fractional Brownian field is simply called a fractional
Brownian motion. However, in this thesis, we will abusively call fractional Brownian
motions (fBm) any fractional Brownian field.

A fBm is an example of H-self-similar random field. While it is clearly non-stationary,
its increments, on the other hand, are stationary, meaning that for any r1, τ ∈ T ,
(X(r1 + τ )−X(r2 + τ ))r2∈T and (X(r1)−X(r2))r2∈T have the same distribution.

A.3.4 Simulation

Another asset of GRFs is that they are relatively easy to simulate. We discuss such
simulation algorithms here in the case of real-valued GRFs, and we refer to [225] for
additional details.
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Obviously, even if the index set T is infinite, a computer will necessarily have to
approximate T through the definition of a relevant finite number of grid points r1, . . . , rn ∈
T . This way, the simulation of a real-valued GRF X defined on T amounts to the
simulation of a real-valued Gaussian random vector X̃ = (X1, . . . , Xn)T with Xi = X(ri).
In the following we identify X to its discrete approximation X̃.

In the general case, with µ the mean vector of X, and Σ its covariance matrix, one
can simply simulateX provided one knows a square root A of Σ, that is a matrix A such
that Σ = AAT.6 Indeed the random vector Y = µ +AZ with Z = (Z1, . . . , Zn)T and
Z1, . . . , Zn

i.i.d.∼ N (0, 1) has by construction the same distribution as X since we trivially
have:

E [Y ] = E [µ] + E [AZ] = µ+AE [Z] = µ, (A.30)

E
[
(Y − E [Y ])(Y − E [Y ])T

]
= AE

[
ZZT

]
AT = Σ. (A.31)

However, in practice finding a square root of Σ can be a quite computationally demand-
ing step. It usually requires to find the Cholesky decomposition of Σ which involves
algorithms with a complexity O(n3) (for the most general case).

Fortunately, there exist much more efficient algorithms to simulate GRFs provided
they are stationary. Let us illustrate this on the example of the generation of a stationary
Gaussian random image X defined on a square, with periodic boundary conditions, that is
with T = Z/NZ×Z/NZ (see [225]). In that case, T is a finite set so we do not need to make
discretization approximations. To simplify, let us assume that X is zero-mean since a non-
zero mean can be trivially added a posteriori. We first arrange the grid points (i, j) ∈ T in
the order (0, 0), (0, 1), . . . , (0, N−1), (1, 0), . . . , (N−1, N−1), so that Σ can be expressed
as a n × n matrix with n = N2 and Σkl = E [X(bk/Nc, k mod N)X(bl/Nc, l mod N)].
This way, the covariance matrix Σ is a symmetric block-circulant matrix with circulant
blocks, meaning it can be written as:

Σ =


C1 C2 C3 . . . CN
CN C1 C2 . . . CN−1

. . .
C2 C3 . . . CN−1 C1

 , (A.32)

with Ci a circulant matrix of size N × N , which is thus defined by its first row. This
matrix is entirely defined by its first row. Let us arrange this first row in a N ×N matrix
G. The eigenstructure of a matrix such as Σ is well known and one can write:

Σ = Pdiag(γ)P , (A.33)

with P the Kronecker product of two DFT matrices F (see Appendix B for a definition),
and γ the vector of eigenvalues. When arranged in a square matrix Γ of size N × N ,
this vector of eigenvalues can be determined by Γ = NFGF . Finally, A = Pdiag(√γ)
is a square root of Σ, from which one can easily generate realizations of X as explained
above. Such algorithms thus avoid an expensive Cholesky decomposition, by relying only
on two-dimensional DFT computations. With the FFT2 algorithm, the complexity of

6Note that a square root always exists as the covariance matrix is a positive semidefinite symmetric
real matrix.
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Fig. A.2 Simulation of a GRF (middle) based on the empirical autocorrela-
tion function estimated from the left image. We show in the right panel for
comparison the phase randomized image of the left one.

this simulation method becomes O(n log(n)), which is a great improvement of complexity
compared to the O(n3) complexity of Cholesky decomposition algorithms.

In a more general case, without necessarily assuming periodic boundary conditions
for X, or square images, a common and more sophisticated algorithm also valid in higher
dimensions is that of circulant embedding [226]. This algorithm consists in embedding
the target covariance matrix in a larger matrix that is block-circulant with circulant
blocks. Then, similarly to above, the eigenstructure of this new matrix can be efficiently
determined with the FFT. This approach has been extended to the case of complex-valued
GRFs in [227, 228].

A.3.5 Gaussianization

We now discuss two methods of "Gaussianization", that is, given some data x, the gen-
eration of a realization x̃ of a GRF X̃ having consistent first and second-order statistics
with those of x.

The first method makes use of the simulation techniques described in the previous
subsection, and is the most rigorous. Then, we discuss an approximate method, called
phase randomization, that is employed in Chapter III for its simplicity.

a) Rigorous method

Given an image x, assumed to be real-valued and with a zero-mean for simplicity, we
wish to generate new Gaussian realizations x̃ that have similar second-order statistics to
those of x. We assume x to be a realization of a stationary random field X, the case of
non-stationary data being intractable in general.

As explained in Sect. A.3.4, we are able to generate realizations of stationary GRFs
based on a covariance matrix Σ describing their second-order statistics. Therefore, we
only need to define a relevant Σ derived from x, meaning we need to estimate the auto-
covariance function of X.
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Assuming an ergodic X, we estimate CX with the following natural estimator ĈX :

ĈX(r2 − r1) = 1
|T |2

∑
r1∈T

∑
r2∈T

x(r1)x(r2). (A.34)

In practice, with an additional periodic boundary condition assumption on X, we effi-
ciently compute ĈX with the FFT using the fact that:

ĈX = 1
|T |
F−1

[
|F [x]|2

]
, (A.35)

where F is the DFT. This allows a complexity in O(|T | log(|T |)) instead of O(|T |2) for a
naive algorithm directly relying on Eq. (A.34).

We present in Fig. A.2 a numerical application of this method. We show the test
image (left) used for this example (same one as that introduced in Sect. A.2.2), next to
the resulting Gaussianization of the image (middle). This relies on the estimation of the
autocovariance function CX as explained here and the subsequent generation of a GRF
realization with the technique described in Sect. A.3.4. Note that here the test map has
highly non-Gaussian statistics, so that the effect of this Gaussianization is to strongly
damage the statistical properties of the test map. In particular, the filamentary structure
of the image is completely suppressed by this procedure.

b) Approximate method: phase randomization

We introduce another Gaussianization method, called phase randomization, which is more
straightforward to implement and gives satisfactory results for the purposes of this the-
sis (see Chapter III).

Given a real-valued image x of size N × N , assuming periodic boundary conditions
for simplicity, so that its domain of definition is T = Z/NZ×Z/NZ, we define a random
image y in Fourier space by:

ŷ(ξ) = |x̂(ξ)|eiφ(ξ), (A.36)

for every mode ξ ∈ T and with φ(ξ) drawn from a uniform distribution on [0, 2π). In
fact, φ must verify some additional constraints to properly define a real-valued image
y. In [229], where such phase-randomized fields are studied, φ is called a realization of
a uniform random phase. With T0 = {(0, N/2), (N/2, 0), (N/2, N/2)} if N is even, and
T0 = ∅ otherwise, it is defined by the following constraints:

1. ∀ξ ∈ T \ T0, φ(−ξ) = −φ(ξ),

2. ∀ ξ ∈ T , φ(ξ) is drawn uniformly and independently in [0, 2π) (obviously the inde-
pendence holds for modes that are not related by 1.),

3. ∀ξ ∈ T0, φ(ξ) is drawn uniformly and independently in the set {0, π}.

In addition to ensuring that y will be real-valued, note that these relations also ensure
that the mean of y will be equal to the absolute value of the mean of x (since condition
1. gives φ(0) = 0).

The motivation behind such a definition is twofold. First, the phases of a stationary
GRF are known to be independently drawn from a uniform distribution on [0, 2π) (see
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e.g. [187]). Second, this procedure will retain estimates of the power spectrum such as
defined in Sect. A.2.2. However let us emphasize that from a mathematical point of
view, random fields Y defined from a single x as described here are not stationary GRFs.
Indeed, the moduli of Fourier modes of a GRF cannot be deterministic. Typically, when
stationary they must follow Rayleigh distributions.

We show in Fig. A.2 (right) an example of phase-randomized image. We see that it is
visually consistent with a more rigorous Gaussianization as described above.





Appendix B
Elements of Fourier and wavelet
analysis

The idea that signals can generally be represented by a sum of oscillating modes of multiple
frequencies is key to signal processing. In Fourier analysis, signals are viewed as sums of
simple trigonometric functions called Fourier modes, while in wavelet analysis, they are
decomposed into wavelets.

In this appendix, we first recall classical definitions and results revolving around the
Fourier transform. We give results without proof, referring to [230] and references therein
for proofs and additional details. Then, we give some technical complements on the
wavelets used for this thesis, and illustrate their action when they are convolved to images.

We denote by Lp(Rn), with p ≥ 1, the set of measurable functions f : Rn → C for
which the p-norm defined by ‖f‖p = (

∫
Rn |f(r)|pdr)1/p is finite. We recall that these sets

Lp(Rn) are all vector spaces. Functions of L1(Rn) are simply called integrable functions.
For f ∈ L2(Rn), we define the energy of f by its squared 2-norm ‖f‖22, which is thus a
finite positive number. In L2(Rn) the 2-norm ‖·‖2 coincides with the norm associated to
the inner product defined for all f and g in L2(Rn) by:

〈f, g〉 =
∫
Rn
f(r)g(r)dr, (B.1)

and (L2(Rn), 〈·, ·〉) defines a Hilbert space.

B.1 The Fourier transform

B.1.1 Definition on L2(Rn) and elementary properties

a) Definition

Physical fields are usually well modeled by functions of L2(Rn), which are by definition
functions of finite energy. This motivates the definition of the Fourier transform on this
specific functional space. In addition to this, we will see that, in this space, the Fourier
transform also has very convenient properties.

The definition of the Fourier transform in L2(Rn) is not straightforward, as it usually
first requires the definition of the Fourier transform in L1(Rn).

145
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Definition B.1.1. With f an integrable function, that is f ∈ L1(Rn), the Fourier trans-
form of f is the function f̂ : Rn → C defined for all k ∈ Rn by:

f̂(k) =
∫
Rn
f(r)e−ik·rdr. (B.2)

We call f̂(k) a Fourier mode of f . This definition does not pose any problem as
r → f(r)e−ik·r is trivially integrable for any k ∈ Rn. Provided f̂ is in L1(Rn), the
Fourier transform can be inverted.
Proposition B.1.1. Provided f̂ ∈ L1(Rn), Eq. (B.2) can be inverted as follows:

f(r) = 1
(2π)n

∫
Rn
f̂(k)eik·rdk. (B.3)

Now, extending this definition to functions f ∈ L2(Rn) is not direct since r → f(r)e−ik·r
is not generally integrable. We proceed thanks to the density of L1(Rn) ∩ L2(Rn) in
L2(Rn).
Definition B.1.2. For f ∈ L2(Rn), and {fn}n∈N a sequence of functions of L1(Rn) ∩ L2(Rn)
converging towards f (2-norm convergence), the Fourier transform of f ∈ L2(Rn) is de-
fined as the limit f̂ of the sequence of functions {f̂n}n∈N.

b) Elementary properties

Fortunately, for f ∈ L2(Rn), f̂ is also in L2(Rn), and we thus define the corresponding
Fourier transform operator F : L2(Rn)→ L2(Rn) by F [f ] = f̂ for all f ∈ L2(Rn). Let us
now review elementary properties of the operator F that interest us in this thesis.
Proposition B.1.2. F is a linear operator, that is for any f, g ∈ L2(Rn) and α, β ∈ C:

F [αf + βg] = αF [f ] + βF [g]. (B.4)

It is also invertible, and we call F−1 its inverse.
Note that thanks to this invertibility property we may define functions from their

Fourier representations.
Moreover, when properly normalized, F is a unitary operator, meaning that added to

be linear and invertible, it preserves the inner product of L2(Rn).
Proposition B.1.3. With F̃ = (2π)−n/2F , for all f and g in L2(Rn):

〈F̃ [f ], F̃ [g]〉 = 〈f, g〉. (B.5)

This relation is called Parseval’s formula. Taking f = g, we deduce the Plancherel’s
formula, which traduces the energy conservation of the Fourier transform. This reads:∫

Rn
|f(r)|2dr = 1

(2π)n
∫
Rn
|f̂(k)|2dk. (B.6)

Another important property of the Fourier transform derives from its application to
convolutions. We recall that the convolution f ?g of two functions f, g ∈ L2(Rn) is defined
by:

f ? g(r) =
∫
Rn
f(r′)g(r − r′)dr′, (B.7)

for any r ∈ Rn.
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Proposition B.1.4. The Fourier transform of a convolution of two functions is the
product of their respective Fourier transforms, that is with f, g ∈ L2(Rn):

F [f ? g] = F [f ]×F [g]. (B.8)

Finally, let us mention the hermitian symmetry property of the Fourier transform
when it is applied to a real-valued function.

Proposition B.1.5. With f : Rn → R a real-valued function of L2(Rn), we have:

F [f ](−k) = F [f ](k). (B.9)

B.1.2 Finite discrete signals and the discrete Fourier transform

One-dimensional digitized data takes the form of finite sequences, from which one can
define an equivalent of the previous Fourier transform. When these finite sequences
represent equally-spaced samples, this equivalent is the discrete Fourier transform (DFT).

a) Definition

Definition B.1.3. The DFT of a complex or real-valued finite sequence {x[n]}0≤n<N is
the complex-valued sequence {x̂[k]}0≤k<N defined by:

x̂[k] =
N−1∑
n=0

x[n] exp
(
−2iπkn

N

)
. (B.10)

This relation can always be inverted, thus defining the inverse DFT:

x[n] = 1
N

N−1∑
k=0

x̂[k] exp
(2iπkn

N

)
. (B.11)

The DFT can be formulated in a matrix form. With X = (x[0], . . . , x[n])T the
column vector representing {x[n]}0≤n<N , and X̂ = (x̂[0], . . . , x̂[n])T that representing
{x̂[k]}0≤k<N , we have:

X̂ = FNX with FN =
(

exp
(
−2iπmn

N

))
0≤m,n<N

. (B.12)

FN is called a DFT matrix. This matrix is invertible, and when normalized by 1/
√
N the

resulting matrix is unitary.
We can extend this definition to multi-dimensional data.

Definition B.1.4. Let us consider x an array of sizeN1×· · ·×Nd, denoting by x[n1, . . . , nd]
its elements, with 0 ≤ n1 < N1, . . . , 0 ≤ nd < Nd. The DFT of x is the array x̂ defined
by:

x̂[k1, . . . , kd] =
N1−1∑
n1=0

. . .
Nd−1∑
nd=0

x[n1, . . . , nd] exp
(
−2iπk1n1

N1
− · · · − 2iπkdnd

Nd

)
, (B.13)
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with 0 ≤ k1 < N1, . . . , 0 ≤ kd < Nd.
The inverse of the multi-dimensional DFT extends similarly with:

x[n1, . . . , nd] = 1
N1 × · · · ×Nd

N1−1∑
k1=0

. . .
Nd−1∑
kd=0

x̂[k1, . . . , kd] exp
(2iπk1n1

N1
+ · · ·+ 2iπkdnd

Nd

)
.

(B.14)

These relations can also be formulated in a matrix form by defining a multi-dimensional
DFT matrix relying on the Kronecker product of one-dimensional DFT matrices.

b) Properties

The same properties introduced for the Fourier transform on L2(Rn) remain valid for the
DFT in a comparable form.

For example, in a multi-dimensional context, Eq. (B.6), which traduces the conserva-
tion of energy, becomes:

N1−1∑
n1=0

. . .
Nd−1∑
nd=0

|x[n1, . . . , nd]|2 = 1
N1 × · · · ×Nd

N1−1∑
k1=0

. . .
Nd−1∑
kd=0

|x̂[k1, . . . , kd]|2. (B.15)

For Eq. (B.8) to remain valid for the DFT, the discrete convolution operation must
be a circular convolution. In one dimension, for x = {x[n]}0≤n<N and y = {y[n]}0≤n<N
two finite signals of length N , the circular convolution of x and y, also denoted by x ? y,
is the finite sequence of length N defined as:

x ? y[n] =
N−1∑
p=0

x[p]y[(n− p) mod N ]. (B.16)

This corresponds to a discrete convolution where periodic boundary conditions are as-
sumed. For circular convolutions, we thus have for all k ∈ J0, N − 1K:

x̂ ? y[k] = x̂[k]ŷ[k]. (B.17)

c) The fast Fourier transform

Numerically, computing the DFT of a one-dimensional sequence of length N directly
from the definition written in Eq. (B.10) would a priori require N multiplications and N
additions for each mode. Therefore, multiplying this number by the total number of inde-
pendent modes, the complexity of such a naive algorithm would be O(N2). Fortunately,
there exists a much more efficient algorithm to compute this DFT, called fast Fourier
transform (FFT, see [230]). Indeed, the FFT has a O(N log(N)) complexity, which gen-
eralizes to the multi-dimensional case as O(N1 × · · · ×Nd log(N1 × · · · ×Nd)). Moreover,
thanks to Eq. (B.17), it also allows us to compute convolutions efficiently, meaning with
the same complexity as the FFT.
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Fig. B.1 Morlet wavelets in Fourier space. In the left panel, we show the mod-
ulus of the Fourier transform of the Morlet wavelet ψ1,0. We also add in dashed
lines the contour of this function at half-maximum level. In the right panel, we
illustrate how Morlet wavelets pave Fourier space showing similar contours for
wavelets ψj,θ with j ∈ {0, 1} and θ ∈ {kπ4 , k ∈ J0, 7K}.

B.2 Complements on wavelets
The wavelet transform decomposes a function into a set of time-frequency atoms called
wavelets, thus allowing a local separation of the multiscale variability of some given data.
It is at the basis of the WST and WPH statistics.

In this section, we give complementary information on the wavelets used for this thesis,
and illustrate how they act as bandpass filters.

B.2.1 Wavelets used for this thesis
We give complementary details on Morlet and bump-steerable wavelets which were already
introduced in Sect. III.1.2 and Sect. IV.3.1, respectively.

a) Morlet wavelets

A 2D mother Morlet wavelet ψ is generally defined by:

ψ (r) = α
(
eik0rx − β

)
e−(r2

x+γ2r2
y)/2σ2

, (B.18)

with α and β two constants that are adjusted to ensure a zero mean and a unit L1 norm,
k0 the wave number of the plane wave factor, σ the standard deviation of the Gaussian
envelope, and γ the aspect ratio of this envelope. In practice we choose k0 = 3π/4 pixel−1

and σ = 0.8 pixel as in [4]. We also choose γ = 0.5 to give an elliptical shape to the
envelope, thus enhancing the angular selectivity of the wavelet.

In Fourier space, such a Morlet wavelet reads:

ψ̂ (k) = 2πασ
2

γ

(
e−σ

2(k0−kx)2/2 − βe−σ2k2
x/2
)
e−σ

2k2
y/2γ2

. (B.19)

Note that ψ̂ (k) ∈ R for all k. We show in Fig. B.1 (left panel) the modulus of the Fourier
transform of a Morlet wavelet built from the previous mother wavelet. We also show in
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Fig. B.2 Same as Fig. B.1 but for bump-steerable wavelets.

dashed lines the contour of this function at half-maximum level. The localization of the
bandpass of a Morlet wavelet makes it clearly a bandpass filter.

A bank of Morlet wavelets such as introduced in Sect. III.1.2 is designed to pave the
Fourier space with the respective bandpasses of the wavelets. This is illustrated in Fig. B.1
(right panel) by showing contours at half-maximum level of the modulus of a selection
of wavelets defined for j = 0 and j = 1. Note that for j = 0 wavelets, an aliasing effect
is clearly visible when θ ∈ {0, π/2, π, 3π/2}. We also remark that the coverage beyond
the Nyquist disc of Morlet wavelets is not optimal, which might be related to the flaws
identified in the power spectrum assessment of the WST-based generative models that
are discussed in Sect. IV.2.

b) Bump-steerable wavelets

We recall that a mother bump-steerable wavelet is defined in Fourier space as follows:

ψ̂(k) = exp
(
−(k − ξ0)2

ξ2
0 − (k − ξ0)2

)
· 1[0,2ξ0](k)× cosL−1(arg(k)) · 1[0,π/2](| arg(k)|), (B.20)

with k = ‖k‖, 1A(x) the indicator function that returns 1 if x ∈ A and 0 otherwise, and
ξ0 = 0.85π the central wavenumber of the mother wavelet. Here again, we note that
ψ̂(k) ∈ R for all k.

We show in Fig. B.2 an equivalent illustration to Fig. B.1 but here for bump-steerable
wavelets. A similar aliasing effect is visible for j = 0 wavelets. We also remark that
bump-steerable wavelets better cover spatial frequencies that go beyond the Nyquist disc.

B.2.2 Convolution with a wavelet
Thanks to the convolution theorem introduced in Sect. B.1, the convolution of a given
signal x with a wavelet ψ takes a simple form in Fourier space:

x̂ ? ψ = x̂× ψ̂. (B.21)

This explains why the convolution of a given signal with a wavelet reduces to a standard
bandpass filtering. Figure B.3 gives an illustration of this by comparing a given test
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Fig. B.3 Convolution with (bump-steerable) wavelets and bandpass filtering.
We show in the top row, from left to right: a test map x (left, intensity map
extracted from the I‖ data set that is introduced in Chapter III), the map |x?ψ1,0|
(middle), and the map |x ? ψ1,π/4| (right). These are all normalized by their
standard deviation to show one common color bar only. The bottom row shows
the moduli of the corresponding maps in Fourier space, that is |F [x]| (left),
|F [x ? ψ1,0]| (middle), and |F [x ? ψ1,π/4]| (right).

image x (top left) to its counterparts once it has been convolved by two bump-steerable
wavelets ψ1,0 and ψ1,π/4 (top middle and right). The bottom row shows the moduli of
the corresponding maps seen in Fourier space.





Appendix C

Softwares

I have been developing two public Python packages for the purposes of this thesis, called
PyWST and PyWPH. Both are available on my GitHub webpage: https://github.com/
bregaldo/.

In this appendix, we review the motivations and the main functionalities of these
packages. For a technical presentation of the functionalities we refer the interested reader
to the tutorials and examples provided within the GitHub repositories.

C.1 PyWST

PyWST1 is a public Python package designed to perform statistical analyses of two-dimen-
sional data with the Wavelet Scattering Transform (WST) and the Reduced Wavelet
Scattering Transform (RWST). It relies on NumPy [231], SciPy [197] and Matplotlib [232].
It was publicly released in [168].

The initial motivation for designing PyWST was to provide a simple, flexible and self-
consistent Python framework to compute, handle, and plot WST and RWST coefficients
for astrophysical purposes. It was not designed for gradient-based optimizations, conse-
quently no framework allowing automatic differentiation is employed (see Chapter IV).
For the generation of statistical syntheses such as introduced in Chapter IV, we rather
make use of a modified version of Kymatio [198] and its PyTorch backend [192].

PyWST allows to compute WST and RWST coefficients from real or complex-valued
images such as introduced in Sect. III.1.2 and Sect. III.2.4, respectively. Coefficients
can be computed either locally or globally. The package is built in a modular way so
that changing wavelets or defining its own RWST model is made easily possible. It also
implements convenient plotting methods permitting to easily display and compare the
coefficients.

A pedagogical introduction to using PyWST taking the form of a Jupyter notebook is
available here.

1https://github.com/bregaldo/pywst/
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C.2 PyWPH

PyWPH2 is a Python package designed for the computation and handling of the Wavelet
Phase Harmonics (WPH) statistics such as defined in Sect. IV.3.1. It mainly relies on
PyTorch so that calculations may be GPU-accelerated thanks to PyTorch native CUDA
support [192]. It also employs to a lesser extent NumPy [231]. It was publicly released in
[200].

The need for such a package was motivated by the statistical denoising algorithm
introduced in Chapter V. When this work was conducted, there were, at my knowledge,
only two publicly available codes in Python, which were released in [6] and [199], respec-
tively. I made use of this last one, progressively modifying it until the development of
PyWPH, which was initiated by the will to optimize and simplify the computations of WPH
statistics.

PyWST provides a framework to compute and handle WPH coefficients from real or
complex-valued images such as defined in Sect. IV.3.1. The calculations are implemented
with the PyTorch framework, allowing GPU acceleration with CUDA, and gradient-based
optimizations requiring automatic differentiation. The implementation remains flexible
so that changing wavelets or choosing a custom subset of WPH or scaling moments is
made easily possible. Code examples are provided, notably showing how to generate
statistical syntheses as introduced in Sect. IV.3, and how to perform statistical denoisings
as introduced in Sect. V.2. We point out that PyWPH is still in active development at the
time of writing.

2https://github.com/bregaldo/pywph/

https://github.com/bregaldo/pywph/
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MOTS CLÉS

Milieu interstellaire, poussière, statistiques, fond diffus cosmologique, champs magnétiques.

RÉSUMÉ

L’émission thermique de la poussière interstellaire est le principal avant-plan de la polarisation du fond diffus cos-
mologique (FDC) au-delà de 100 GHz. Pour cette raison, la quête de modes B dans le FDC, associés aux ondes
gravitationnelles générées durant l’ère inflationnaire de l’Univers primordial, est étroitement liée à la physique du milieu
interstellaire (MIS), des grains de poussières qu’il contient, et du champ magnétique qui le traverse. La complexité de
cette physique fait de la caractérisation statistique du MIS magnétisé diffus un défi majeur. Pour tenir compte des statis-
tiques non-Gaussiennes de la distribution spatiale de cette émission polarisée des poussières interstellaires, nous avons
besoin de descripteurs statistiques permettant de quantifier les couplages entre échelles. Cette thèse vise donc à définir
un modèle statistique de cette émission. J’emploie la wavelet scattering transform (WST) et les wavelet phase harmonics
(WPH) pour obtenir des représentations multi-échelles de cartes de polarisation. La dépendance angulaire des coef-
ficients WST peut être modélisée avec la reduced wavelet scattering transform (RWST), un modèle angulaire introduit
dans des travaux antérieurs pour des cartes en intensité totale. La RWST fournit une description statistique des cartes de
polarisation, en quantifiant leurs propriétés multi-échelles en termes de contributions isotropes et anisotropes, donc in-
terprétables géométriquement et potentiellement physiquement. La (R)WST, et de façon similaire la WPH, permettent de
définir des modèles statistiques génératifs reposant sur ces coefficients, à partir desquels de nouvelles réalisations aléa-
toires, statistiquement similaires aux cartes originales, peuvent être construites. Lorsque le bruit devient important dans
les observations, ces statistiques sont fortement contaminées. Pour surmonter cette difficulté, j’introduis une méthode de
débruitage statistique fondée sur les statistiques WPH, visant à retrouver les propriétés statistiques non Gaussiennes de
l’émission non-bruitée. J’ai également développé deux logiciels pour les besoins de cette thèse, appelés PyWST et PyWPH,
qui prennent la forme de paquets Python rendus publics.

ABSTRACT

The thermal emission of interstellar dust is the main foreground to cosmic microwave background (CMB) polarization
above 100 GHz. For this reason, the quest for primordial B-modes in the CMB, which are expected to arise from gravita-
tional waves produced during the inflation era in the very early Universe, is closely related to the physics of the interstellar
medium (ISM), of its dust grains, and of its magnetic field. The complexity of this physics makes the statistical char-
acterization of the diffuse magnetized ISM a major challenge. To account for the non-Gaussian statistics of the spatial
distribution of the polarized emission of interstellar dust, we need statistical descriptors that quantify couplings across
scales. This thesis precisely aims to define a statistical model of this emission. I employ the wavelet scattering transform
(WST) and the wavelet phase harmonics (WPH) to derive multiscale representations of polarization maps. The angular
dependence of the WST coefficients can be fitted with the reduced wavelet scattering transform (RWST), an angular
model introduced in previous works related to total intensity maps. The RWST provides a statistical description of po-
larization maps, quantifying their multiscale properties in terms of isotropic and anisotropic contributions, which can be
interpreted geometrically, and potentially related to the physics of the medium. The (R)WST, and similarly the WPH,
allow me to define generative statistical models, from which new random realizations statistically similar to the original
maps can be drawn. When noise becomes prominent in the observations, these statistics are strongly contaminated.
To overcome this difficulty, I devise a statistical denoising method based on WPH statistics, aiming at retrieving the non-
Gaussian statistical properties of the noise-free emission. Additionally, I have developed two softwares for the purposes
of this thesis, called PyWST and PyWPH, which take the form of public Python packages.

KEYWORDS

Interstellar medium, dust, statistics, cosmic microwave background, magnetic fields.
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